

 Copyright by the DIATOMIC Consortium

Smart Anything Everywhere Initiative

Area 3: Advanced micro-electronics components and Smart System
Integration Project: H2020–No 761809

Digital Innovation Hubs boosting European
Microelectronics Industry

D3.3: Active and Healthy Ageing
application experimentation

(supporting documentation)

Author(s): João Quintas, Sérgio Sousa, Matthias Schneider,
Rubén Hermoso

Status - Version: FF

Delivery Date (DoA): 31 May 2018

Actual Delivery Date: 29 May 2018

Distribution - Confidentiality: Public

Code: DIATOMIC_D3.3_IPN_FF-20180529

Abstract:

This manual provides a useful step-by-step guide for the extended eVida VFK My Signals integrated
platform.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 2 of 62

Disclaimer

This document may contain material that is copyright of certain DIATOMIC beneficiaries, and may
not be reproduced or copied without permission. All DIATOMIC consortium partners have agreed to
the full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

The DIATOMIC Consortium is the following:

The information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

Participant
number

Participant organisation name
Short
name

Country

01 INTRASOFT International S.A. INTRA BE

02 F6S NETWORK LIMITED F6S UK

03 BioSense BIOS SRB

04 Synelixis Solutions SYN EL

05 Instituto Pedro Nunes IPN PT

06 Fraunhofer IPA IPA DE

07 InoSens INO SRB

08 Libelium Comunicaciones Distribuidas SL LIB ES

09 FastTrack FASTT PT

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 3 of 62

Document Revision History

Date Issue Author/Editor/Contributor Summary of main changes

02.03.18 V0.1 Sérgio Sousa (IPN) Initial version of the document

09.03.18 V0.2 Matthias Schneider (IPA) VFK related content

13.03.18 V0.3 Rubén Hermoso (LIB) MySignals related content

14.03.18 V0.4 Sérgio Sousa (IPN) Document formatting and
review

15.03.18 V0.5 Sérgio Sousa (IPN), Rubén Hermoso (LIB) Document structure changes

15.03.18 V1.0 João Quintas (IPN) Review and acceptance

23.03.18 V1.1 Sérgio Sousa (IPN) New section 2.1.3

22.05.18 V1.2 Matthias Schneider (IPA) Update sections 3.4, 3.5, 3.6,
0

25.05.18 V1.3 Esteban Gutierrez (LIB) New section 3.8

29.05.18 FF Babis Ipektsidis (INTRA) Final Review and Final Version
to be Submitted

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 4 of 62

Table of Contents

1 Introduction ___ 6
1.1 Goal ___ 6
1.2 Test scenario __ 6

2 Modules description ___ 7
2.1 eVida __ 7
2.2 MySignals ___ 16
2.3 Virtual Fort Knox Cloud Platform ___ 29

3 Step by step implementation of test scenario for Application Experiment: Health ________ 52

3.1 A general overview __ 52
3.2 Step 1: Login in eVida __ 52
3.3 Step 2: Retrieving username from eVida ___ 52
3.4 Step 3: Register MySignals device to MSB __ 53
3.5 Step 4: Send data ___ 54
3.6 Step 5: Register eVida to MSB ___ 56
3.7 Step 6: Get user sensor related data __ 56
3.8 Putting all together __ 60

4 References __ 62

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 5 of 62

List of Abbreviations

API Application programming interface

GUI Graphical user interface

HL7 Health Level Seven International

IPA Institute for Manufacturing Engineering and Automation

IT Information technologies

JSON Graphical user interface

MSB Manufacturing Service Bus (middleware supplied by VFK)

PHR Personal Health Record

REST Representational State Transfer

RIM HL7 Reference Information Model

SCM Services Cloud Manager

VFK Virtual Fort Knox

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 6 of 62

1 Introduction
This document presents a thoughtful guide on how to integrate an existing solution with DIATOMIC
platform. This platform contains several components –described in detail later – which can be integrated
separately. Users are not obliged to integrate their solutions with all the components described here.
They can choose to integrate with the ones that best suit their needs.

For the purpose of this document, a full integration with all the components is described, so users can
have a broader view of all the potentialities of every component and the greater value added by
integrating them.

1.1 Goal

The objective is to offer end users a cost effective platform for medical devices that could be utilized as
an alternative for measuring different health parameters without the need of a big investment in
equipment.

1.2 Test scenario

The goal is to have the sensor medical data acquired, stored in HL7 format, and easily available for
viewing. Figure 1 shows the conceptual flow for the integration of the different components.

Figure 1: Components integration

Medical data is acquired by the means of a sensor integrated with MySignals. MySignals should retrieve
user information from eVida (1). After that it send the sensor and user related data to VFK (2). VFK must
them work this data into HL7 format and store it, so eVida can get it (3) for easy display through the PHR
interface.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 7 of 62

2 Modules description
In this section, the different modules are presented and described. It is important to get familiar with all
modules, as some preliminary steps on how to configure / setup them maybe required. These
instructions are important and should be followed in order to have a smooth integration.

2.1 eVida

eVida’s main objective is to provide the infrastructure and tools to quickly develop new applications and
deliver them to end-users. Therefore, it provides an answer to patient health self-management supported
by technology (https://www.youtube.com/watch?v=fwHnHbcpVHY). The platform already provides an
electronic personal health record and supports remote monitoring from devices.

2.1.1 Create a new account on the eVida platform

The first step is to create a user account on the eVida platform. Thus, the user needs to navigate to
https://www.evida.pt and register an account. As a logged user one can access the platform's web store.

By default, when a user accesses for the first time the platform, the account is not set to a developer
account. Therefore, to be able to develop applications for eVida it is needed to activate the developer
option (Figure 2). In order to do so Log in, go to Settings (1) in the sidebar, then to Developer Settings
(2) and toggle the option Connect this account to a developer account to YES (3).

Figure 2: Connecting account to a developer account

2.1.2 Create an OAuth Consumer

Authentication in eVida platform is done using OAuth2. This is an important step as it will allow the
retrieval of information, such as the user logged in.

To perform the OAuth2 flow, a Consumer Key is needed, which identifies your application. To get the
Consumer Key, go to Developer (1) section and then access API access (2) tab. Once there, click

1

2
3

https://www.evida.pt/

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 8 of 62

Create another Oauth Consumer (3) (Figure 3), fill the form – the field Redirection URI may be left
blank – and submit it. A Consumer Key and Consumer Secret will then be generated.

Figure 3: Create an OAuth Consumer

The Consumer Key and Consumer Secret are essential to obtain the access token (later described)
which will allow full integration with eVida’s API [1].

2.1.3 Activate the PHR application

Figure 4: Activate PHR application in eVida

To activate the PHR application (Figure 4), already available in eVida, one needs to first access it once.

1

2
3 4

1

2

3

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 9 of 62

The following steps describe the process to activate the PHR:

1. Login in eVida: https://www.evida.pt;
2. Locate the “Personal Health Record” application in the “Web Store” and click on it;
3. Click on “OPEN APPLICATION”;
4. Allow application’s access by clicking “Permitir acesso”.

A graphical representation of these steps is shown in Figure 4

2.1.4 eVida‟s API

eVida platform provides a RESTful API [1] which allows getting and posting data between applications
easy.

To demonstrate the interaction with APIs, here is used Postman, which is a tool for API developers
(https://www.getpostman.com/). It allows an easy understanding and interaction with the REST APIs
here presented.

2.1.4.1 Step 1: Login (getting the access token)

To get access to eVida’s API first an access token has to be obtained. This is achieved through a POST
request to https://auth.evida.pt/v2/token with the Headers and Parameters shown in Table 1.

Table 1: POST request to get an eVida access token. Base64() is a function to create a Base64 encoded
string (e.g.: https://www.base64encode.org/).

POST https://auth.evida.pt/v2/token

Headres

Key Value

Authorization Basic Base64(<consumer_key>:<consumer_secret>)

Parameters

Key Value

client_id <consumer_key>

grant_type password

username <evida_username>

password <evida_password>

scope user

Add this data to Postman and hit „Send‟; the result should look like the figure below.

https://www.evida.pt/
https://www.getpostman.com/
https://auth.evida.pt/v2/token
https://www.base64encode.org/

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 10 of 62

Figure 5: Postman POST response to https://auth.evida.pt/v2/token

The response will provide the access_token, which is the parameter to be used in all future eVida API

calls.

2.1.4.2 Step 2: Getting the logged user

GET logged user in eVida:

Table 2: GET request to retrieve logged user

GET https://api.evida.pt/users?bearer_token=<access_token>

The response will look like:

https://auth.evida.pt/v2/token

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 11 of 62

Figure 6: Postman GET response to https://api.evida.pt/users

This request retrieves some information about the logged user in eVida platform. The field “username”

should be saved for further reference.

GET demographic information about the user:

Table 3: GET request to retrieve user demographic information

GET https://ge.evida.pt/PersonalProfile/items

Headres

Key Value

Authorization Bearer <access_token>

https://api.evida.pt/users

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 12 of 62

Figure 7:Postman GET response to https://ge.evida.pt/PersonalProfile/items

Getting list of shared profiles

Table 4: GET request to retrieve list of shared profiles

GET https://ge.evida.pt/otherUserProfile

Headres

Key Value

Authorization Bearer <access_token>

https://ge.evida.pt/PersonalProfile/items

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 13 of 62

Figure 8: Postman GET response to https://ge.evida.pt/otherUserProfile

This request will return the list of users that have shared information with the logged user in PHR. This is
very useful as one user can have access to multiple users’ data information, allowing for one user being
able to update others users medical information.

The data follows the structure:

{

 “username”: {

 “email”: “. . .”

 . . .

 },

 . . .

}

The important data to retrieve is the “username”.

2.1.4.3 Step 3: Posting data to eVida (Archetypes)

eVida provides several Archetypes, where users can store sensor medical data in HL7 format. Below are
presented the different archetypes supported at the moment.

Oximetry:

Table 5: POST request to send data to the Oximetry archetype.NOTE: at0006 and at0036 are fields for the
Oximetry archetype, as defined in openEHR / HL7 v3 RIM

POST https://ge.evida.pt/indirect_oximetry?access_token=<access_token>

https://ge.evida.pt/otherUserProfile

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 14 of 62

Parameters

Key Value

apiRequest.userProfileUsername <username>

measurement_date 15/01/2018

measurement_time 18:16:54

at0036 Nonin Onyx II 9560 Oximeter

at0006 97/100

Figure 9: POST response tohttps://ge.evida.pt/indirect_oximetry

It is possible to post to a user other than the logged user. That is why having a list of the users that share
the profile with the logged user is useful for this step.

Following are presented the other archetypes supported by eVida. The procedure to post data to those
archetypes is similar to the method described above; only the data must be adjusted accordingly.

Pulse (Heart Rate):

https://ge.evida.pt/pulse

https://ge.evida.pt/indirect_oximetry

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 15 of 62

Figure 10: Pulse archetype

Body Weight:

https://ge.evida.pt/body_weight

Figure 11: Body weight archetype

Blood Pressure:

https://ge.evida.pt/blood_pressure

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 16 of 62

Figure 12: Blood pressure archetype

2.2 MySignals

MySignals SW includes three different modes to access all the information gathered from the sensors
(Figure 13):

 Standalone Mode ([2], page 35): MySignals does not send the data. It is just visualized on the
TFT screen.

 Bluetooth Connection Mode ([2], page. 48): MySignals send the data to a mobile phone using
the BLE connection. The data is gathered and visualized by the MySignals App ([2], page 46).
Then if the Cloud option is enabled, the data will be also transferred to the user's account at the
Libelium Cloud.

 Server Connection Mode ([2], page 65): MySignals uses the WiFi connectivity to send the data
directly to the Libelium Cloud.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 17 of 62

Figure 13: MySignals‟ accessing information modes

2.2.1 MySignals Account

This guide will describe briefly the necessary steps that need to be accomplished in case any end user
or developer wants to integrate any platform with the MySignals Cloud. The MySignals Web Server
Application is a real-time large-dataset viewing and plotting tool and has built-in data analysis
functionality. It is very user-friendly and contains many powerful built-in features. The MySignals Web
Server Application is an Application that allows you to configure MySignals for creating profiles and
users and help you to visualize all the data measured. In order to access the MySignals web application
it is necessary to have a SCM account and a valid license. SCM stands for “Services Cloud Manager”,
and is Libelium's platform from where you can manage your devices Cloud Services:

1. To create a free SCM account please fill this form and click in the validation email that you will
receive:
https://cloud.libelium.com/register
(If additional help is needed please check the Services Cloud Manager Guide [3])

2. To activate your license you will need to follow this steps:

 Obtain a license: in case you are a developer and want to create your own solution on the top of
MySignals platform, you will have two different ways to obtain a license.

o DIATOMIC consortium has provided me one MySignals hardware device: Libelium
will give some free of charge MySignals devices to few developers/SMEs, so that they
can test the technology and use it for their developments. In this case you will need to
contact projects@libelium.com so that the Libelium team can manage your request and
provide to you a PRO developer license for free, valid within the lifetime of the DIATOMIC
project.

o I have decided to buy one MySignals hardware device: in case you decide to acquire
any of the MySignals kits available, you will also need to buy your MySignals license from
Libelium's IoT Marketplace [4] or from your Sales agent.

 You will receive in your email the license activation code.

 You must click in the activation link that you will receive by email

After these steps you can start using MySignals Cloud service with the Website, Mobile APP and
Developer API, in the terms and quotas contained in the license that you purchased.

As a special arrangement for the DIATOMIC project, in case you are not interested in the hardware, but
you need some sample data in order to develop your own solution on the top of MySignals cloud,
Libelium will enable a test account for developers so that you can test Libelium's API, and interact with
it. Note that in this case, you will not receive any activation code and you will not be able to have access
to all the functionalities of MySignals Cloud. In order to obtain a test account, you will need to contact

https://cloud.libelium.com/register
mailto:projects@libelium.com
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 18 of 62

projects@libelium.com. The Libelium team will manage your request and provide you the credentials.
This account will be valid within the lifetime of the DIATOMIC project.

2.2.2 License activation

The “Licenses” section gives control of the licenses for the SCM. Licenses enable services for your
devices. The “My Licenses” panel lists the currently active licenses and the historic data of all the expired
licenses. If you recently purchased a License, go to the “Get Licenses” panel (Figure 14) to enter its
activation code.

License activation codes are unique and only one use is allowed (one license only applies to one user, to
one account). Despite the fact that the ownership of one device can be transferred (and one device can
be managed by several users), the ownership of a license cannot be transferred.

Any license has an expiration time associated to it. It is important to note that time starts running from
the moment the user activates it by entering its activation code (after entering the activation code of a
license, it may be required to activate it in the “Service” panel).

If the user has one active license and activates a new one, time keeps running for both the old and the
new licenses (in other words, time is never paused).

The “My Licenses” panel shows the licenses and the status of each one. The “Active” tab shows the list
of the licenses which are currently active, and the “Expired” tab shows the list of previously used
licenses.

Figure 14: MySignals "My Licenses" panel

The information displayed is:

 License ID: Identification number

 Service: Service and type provided by the license

 Activated: Date of activation

 Expires: Date of expiration
License registration is done in the “Get Licenses” panel (Figure 15). It is a 2-step procedure: enter a valid
license activation code (Figure 16) and confirm the action (Figure 17).

mailto:projects@libelium.com

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 19 of 62

Figure 15: MySignals "Get Licenses" panel

Entering a Single Activation Code will register one license. A Group Activation Code will register all
devices belonging to the Sales Order, but not the licenses it may contain.

Figure 16: Add License Step 1

Figure 17: Add License Step 2

The SCM will validate the activation code, displaying a visual confirmation. When the process is finished
successfully, a message will show that the license has been correctly added to the “My Licenses” panel
(Figure 18).

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 20 of 62

Figure 18: License added successfully

If the process could not be finished correctly, a message will notify the error. For example, “invalid
activation code: please check that the activation code you entered is valid” (Figure 19).

Figure 19: License invalid

2.2.3 API Cloud

Developers may relocate the information stored in the Libelium Cloud to a third party Cloud server easily
using the API Cloud provided.

2.2.3.1 A general overview

Libelium MySignals comes with a Cloud API that allows us to read data from our account. We can see a
list our members and read the values measured for a user by MySignals. This data available in this
RESTful API can be used by the customer to create new developments.

There is no need to install anything but you can go to the representation of the API in Swagger format
(Figure 20): https://cloud.libelium.com/mysignals_documentation/api_web/

https://cloud.libelium.com/mysignals_documentation/api_web/

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 21 of 62

Figure 20: MySignals API in Swagger format

Here you can browse all the available methods of the API and see the parameters that you need to use.
It is possible to test the API from here following steps

2.2.3.2 Step 1: Login (getting the access token)

Click over '/auth/login', fill the form with your email and password and click 'Try it out!'. If you provided the
right data you should see something like this:

The response body contains the token that you should use to access to your data in the following steps.
Click 'Authorize', write 'Bearer <your token>' and click authorize:

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 22 of 62

2.2.3.3 Step 2: Get list of your members

Click in '/members' section and then “Try it out!” button. You should see a list with your members. If you
don't see it please make sure that you followed all the instructions of the previous step (Login).

With all the data that this method retrieves, you should have information enough to develop a webpage
that could be similar to the one presented on the following image:

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 23 of 62

2.2.3.4 Step 3: Get the sensor values of a member

Click '/values' section and fill the parameters as in the picture. Then click “Try it out!” button. In this case
you will need to introduce the sensor_id so that you can retrieve the desired information.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 24 of 62

Sensor_ids available for retrieving data are:

sensor_id name units

position Body position 1 supine, 2 left, 3 right, 4 prone,
5 stand or sit, 6 non-defined

position_x X axis acc g

position_y Y axis acc g

position_z Z axis acc g

temp Temperature º C

emg_cpm Muscle contraction cpm

ecg_bpm Heart rate bpm

airflow_ppm Respiratory rate ppm

gsr_us Conductance µs

gsr_ohms Resistance ohms

blood_dias Diastolic pressure mmHg

blood_syst Systolic pressure mmHg

blood_bpm Heart rate bpm

spo2_oxy Oxygen saturation %

spo2_bpm Heart rate bpm

gluco_mg Glucose mg mg/dl

gluco_mol Glucose mmol mmol/l

spir_pef PEF spir_pef

spir_fev FEV1 spir_fev

snore_spm Snore rate spm

scale_ble_weight Wheight kg

scale_ble_bodyfat Bodyfat %

scale_ble_bonemass Bonemass %

scale_ble_musclemass Musclemass %

scale_ble_visceralfat Visceralfat %

scale_ble_water Water %

scale_ble_calories Calories kcal

blood_ble_dias Diastolic pressure mmHg

blood_ble_syst Systolic pressure mmHg

blood_ble_bpm Heart rate bpm

spo2_ble_oxy Oxygen saturation %

spo2_ble_bpm Heart rate bpm

gluco_ble_mg Glucose mg/dl

gluco_ble_mmol Glucose mmol mmol/l

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 25 of 62

eeg_ble_attention EEG Attention %

eeg_ble_meditation EEG meditation %

temp_ble Temperature ºC

button_ble Alarm button 0 off, 1 on

2.2.3.5 Step 4: Last member data for all the sensors

The previous method requires specifying the sensor_id. Alternatively there is another method that

allows requesting all the last values registered for all the sensors. Click '/values/last_member_data/'
section and fill the parameters as in the picture. Then click “Try it out!” button.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 26 of 62

2.2.3.6 Step 5: Get a list of sensor raw data

Click '/raws' section and fill the parameters as in the picture. Then click “Try it out!” button. This method
will answer with all the members that have linked any sensor data which wave signal can be represented
graphically. You will need to keep the ID so that you can use it on next step.

Sensor_ids that have a wave signal representation available are:

Sensor_id Name

airflow_raw Airflow Wave Signal

ecg_raw ECG Wave Signal

emg_raw EMG Wave Signal

snore_raw Snore Wave Signal

The method returns a list of the available raw data that can be requested in detail with the following
method, as mentioned before.

2.2.3.7 Step 6: Get detail of sensor raw data

Click '/raws/{id}' section and fill the parameters as in the picture. Then click “Try it out!” button.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 27 of 62

This method answers with all the necessary information for representing a wave signal graphically on
your web page. You will be able to develop a tab in your dashboard that shows for example the ECG
Wave Signal, as follows:

2.2.4 PHP example

There is an example (Figure 21) that you can download from:

 http://downloads.libelium.com/mysignals/mysignals_web/api_cloud_v1.zip

http://downloads.libelium.com/mysignals/mysignals_web/api_cloud_v1.zip

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 28 of 62

Necessary steps:

 Extract the zip with the example

 Download the 'httpfull' library and place it in the /includes directory
http://phphttpclient.com/downloads/httpful.phar
Edit the file example.php and fill $email and $password with your values

 Go to your web browser and load the example.php page

 This will log you in the system, get a list of your members and get the latest 5 temperature values
of one of your users

http://phphttpclient.com/downloads/httpful.phar

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 29 of 62

Figure 21: PHP example code

2.3 Virtual Fort Knox Cloud Platform

Virtual Fort Knox (VFK) is a federative platform for the manufacturing industry developed by the
Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA). It will offer
manufacturing companies an IT strategy that is cost-efficient, agile and scalable. Companies will be
provided with efficient access to Industry 4.0 software solutions which are independent of manufacturers,
in order to make advances in the digitalisation and optimisation of their production processes. Figure 22
depicts the concept of VFK. It is based on a cell structure and follows the “security-by-design” principle.
Each VFK cell is a securely encapsulated environment for service users and service providers.

Figure 22: Virtual Fort Knox Concept

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 30 of 62

Figure 23 illustrates the VFK architecture. The physical devices are on the show floor level and are
called Smart Objects (e.g. equipment or cyber-physical systems (CPS)). Due to the large number of
communication protocols, a middleware is used for the communication. This middleware is called
Manufacturing Services Bus (MSB) and is described in chapter 2.3.1. To communicate with IT services
running in the cloud these services are also connected the MSB. Following a service oriented approach,
the services can be aggregated to new services that provide new functionalities. Economically relevant
will be the opportunity for Independent Service Vendors (ISVs) to offer their services in the VFK
marketplace where the end users is be able to purchase the services they need. E.g. an equipment
manufacturer can offer some special services for its equipment and the customers can purchase the
services which they need. From the technical side VFK offers a software development kit (SDK) which is
available in all common programming languages. Applications can be hosted in the cloud infrastructure
in form of virtual machines and docker containers. Additionally, the platform provides a flexible
middleware as abstraction layer between components which allows changes to the flow of information at
run-time.

Figure 23: Virtual Fort Knox Architecture

2.3.1 Cell Concept of Virtual Fort Knox

Each organization, using VFK, operates within an encapsulated environment, referred to as a cell. These
cells can be publicly hosted or run on a local machine in the network infrastructure of the organization,
as shown in Figure 24. Data cannot be transferred between cells, unless applications or smart objects
are specifically set up to do so (e.g. a bridge interface). Generally, it is advised to use the middleware
accompanying VFK to set up communication within each cell. Each organization with its own cell may
consist of multiple users. Users can deploy virtual machines or will be able to download preset software
from the shop. Such preset software will be available in the centralized shop, which operates similar to
other app-shops. By default, components which are deployed by a user are only visible, and therefore
useable, to him. However, they can be made visible to other users within the organization as well.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 31 of 62

Figure 24: VFK cell concept with locally hosted cells and publicly hosted cells in the main infrastructure

2.3.2 Middleware - Manufacturing Service Bus

The Manufacturing Service Bus (MSB) enables a fast and low-effort integration of smart objects or IT-
Services, because it provides the integration between various communication protocols such as RESTful
Web Service or WebSocket API and various communication standards, for instance OPC UA. For this
purposes the MSB provides common interfaces which allow the communication between smart objects
and IT-services. The communication process is shown in Figure 25. The data are transferred in an
encrypted channel. All send data are transformed to a common data format which ensures that all
communication participants can communicate with each other. Received data are added to a queue to
allow communication between communication partners with different communication cycles. The routing
of the data is done using so-called integration flows, which allow the users to flexibly define where data
is forwarded to. Integration flows can be defined without programming skills in the web based user
interface of the MSB. Alternatively, a RESTful API is also available for automation purposes.

Figure 25: Communication Process of the Manufacturing Service Bus

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 32 of 62

2.3.2.1 Communication pattern

The communication follows the pattern depicted in Figure 26. At the start of the communication, the
client registers itself with the appropriate interface (depending on the used communication protocol).
When registering, the client sends its self-description, so that the MSB knows who is registering and
what capabilities are available and which data can be expected. After registration is done the client can
send data by throwing an event that contains the data. To send data to the client the MSB calls the
appropriate function on the client with the data as function parameters.

Figure 26: Communication Pattern of the Manufacturing Services Bus

2.3.2.2 Self-description of services

Each service has a self-description describing its characteristics. The structure of the self-description is
shown in Figure 27. A service is classified as an Application or as a Smart Object and can be identified
by its unique UUID. Data that is send by a service is described as events. Data that is send to the
service can be received as function. Functions can be used to trigger capabilities of the service by
internally mapping the incoming function to a callback function in the service-specific code. Such a
callback function can trigger return events as well.

Figure 27: Self-description of services

Once a component (smart object or application) is registered at the MSB, the MSB can be configured to
transfer information to and from the component automatically by manual configuration via a graphical
user interface (GUI). A simple example for the communication pattern is shown in Figure 43. To achieve
the shown information exchange, three main configuration steps have to be completed: selection of the
two components, selection of the corresponding event and function and finally mapping of output data of
the smart object to the input parameter of the function of the application. The data emitted by the smart

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 33 of 62

object is attached to the event as a JSON string. The data is then mapped to the corresponding input
parameters of the function of the smart application and wrapped in a JSON string again.

Figure 28: Exemplary pattern for data transfer of smart object to an application

For websocket communication ready-to-use client libraries in several programming languages are
available, which developers of smart objects and applications can use to connect their own product to
the MSB.

2.3.2.3 Meta data format

The data format of events and functions is shown in Table 7. It is based on the OpenAPI Specification
2.0 (aka Swagger Specification) derived from the JSON Schema for programming language independent
definitions of data format. The complete OpenAPI specification that is used for the Swagger-UI as well
as for the applications JSON definition can be found underhttps://github.com/OAI/OpenAPI-Specification.

Listing 1 shows an example for the specification of a complex object.

Table 6: Meta data format of the Manufacturing Service Bus

Common Name Type Format Comments

Integer integer int32 signed 32 bits

Long integer int64 signed 64 bits

Float number Float

Double number double

String, Short string

Byte string Byte

Boolean boolean

Date string date-time
As defined by date-time -
RFC3339

Common Name Type Items Comments

Array, List, Set array <items>

https://github.com/OAI/OpenAPI-Specification

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 34 of 62

Common Name Type Properties Comments

Model object <properties>

Common Name $ref Comments

Reference #/definitions/<Model>

Listing 1: Sample of a complex object specification

{ "dataObject":{

 "$ref":"#/definitions/alarm" },

 "alarm":{

 "type":"object","properties":{

 "reason":{"type":"string"},

 "errorCode":{"type":"integer","format":"int32"},

 "machine":{"$ref":"#/definitions/machine"} } },

 "machine":{

 "type":"object","properties":{

 "id":{"type":"integer","format":"int64"},

 "name":{"type":"string"}

 } } }

2.3.3 RESTful API

2.3.3.1 Registration

The MSB supports plain old REST to communicate with applications and smart objects. While the
WebSocket interfaces allow to infer the connection state of connected smart objects and applications,
the REST interface does not allow this. The reason for this is the stateless nature of REST interfaces.

The MSB’s REST interface can be reached at port 8083, regardless of the cell the MSB resides in. The
OpenAPI specification can be found at the same port under the path /swagger-ui.html. That means, that
for MSB reachable under the URL msb.vfk.de, the REST API would be reachable under the URL
msb.vfk.de:8083, with the API documentation available under msb.vfk.de:8083/swagger-ui.html.

The Swagger-UI is a documentation tool for APIs that provide an OpenAPI specification. The MSB
provides such a specification. While the OpenAPI specification should provide enough information on the
interface for basic use cases, it does not provide enough information for complex applications. This
documentation serves to supplement the Swagger-UI specification.

As shown in Figure 29, the self-description described in Figure 27 has been extended to support the
integration of the endpoints of a RESTful application. A RESTful application can be registered to the
MSB in two different ways. One possibility is to use the MSB GUI and the other one the REST API of the
MSB.

2.3.3.1.1 Registration with REST API

The REST API two endpoints: One for the registration of an application (Figure 30) and the other one for
the registration of SmartObjects (Figure 31). The self-description of the application that should be
registered must be described as a JSON object. Listing 2 shows such a JSON description of a simple

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 35 of 62

application and is meant to serve as an example. The fields contained in the JSON definition are
described in Table 7.

Figure 29: Extended self-description for RESTful API

Figure 30: REST endpoint to register application

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 36 of 62

Figure 31: REST endpoint to register SmartObject

Listing 2: Sample self-description of REST application as JSON object

{ "@class": "Application",

 "uuid": "71f747a8-b12e-476a-bdb7-85c68c59c282",

 "name": "System Information",

 "description": "Provides information about a remote system",

 "token":"auniquestring",

 "events": [{

 "@id": 1,

 "dataFormat": {

 "dataObject": {

 "type": "object",

 "properties": {

 "system": {"type": "string"},

 "name": {"type": "string"} } } },

 "description": "Displays live information about a remote system.",

 "eventId": "live-information",

 "name": "Live System Information" }],

 "functions": [{

 "@id": 1,

 "functionId": "/system-information",

 "name": "System Information",

 "description": "Provides System information",

 "dataFormat": {},

 "responseEvents": [1] }],

 "endpoints": [{

 "url": "http://www.example.com",

 "connectionType": "REST",

 "functions": [{

 "httpMethod": "POST",

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 37 of 62

 "connectionFormat": "JSON",

"function": 1 }]

 }]

}

Table 7: Description of fields contained in JSON object of a self-description

@class
Can either be Application or SmartObject, depending on which type of object is
described.

uuid
A unique identifier for the application. A valid identifier can be generated under
https://www.uuidgenerator.net/version4.

name The name of the application that will be displayed on the MSB GUI.

description A textual description of the application

token
A token that will be entered in the MSB GUI to complete the registration of the
application

events

A JSON description of the events that the application provides to the MSB. The
defined events have to provide in incremental numerical id, as well as a unique
textual event id. The numerical id is used to refer to the event as a response event
in a function definition, while the textual id is used to route the events information
within integration flows. The dataFormat follows the OpenAPI specification 2.0. The
outer object of the data format must be called dataObject and must be of type
object. Everything within the dataObject is optional and can be defined by the
developer.

functions

A JSON description of the functions that the application provides to the MSB. The
defined functions have to provide in incremental numerical id, as well as a unique
textual function id. The numerical id is used to refer to the event as a response
event in a function definition, while the textual id is used to route the function
information within integration flows. Additionally, the functionId is the path that is
attached to an endpoint. If a function can be reached under the url
www.example.com/someFunction, the functionId must be /someFunction. The
numerical ID is used under endpoints to connect endpoint definitions with
functions. The dataFormat follows the OpenAPI specification 2.0 and is completely
developer defined.

endpoints

A description of the endpoints under which the application can be accessed by the
MSB. A URL and a connection type have to be provided. The functions section
further describes how the functions can be accessed by the MSB. The function
attribute in the specification refers to the @id attribute of a function defined in the
outer application description scope.

2.3.3.1.2 Registration with MSB GUI

A REST Application can be also added using the MSB GUI. Therefore, you must select the
APPLICATIONS tab and press the “+” Button in the left corner. In the pop up you must press “Create
App” and the “Manual app creation wizard” as shown in Figure 32 will appear. In Step 1 an UUID is
automatically generated and you can enter other basic information like the name and the description of
the application.

https://www.uuidgenerator.net/version4

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 38 of 62

Figure 32: Manual app creation wizard – Step 1: Basic Information

In Step 2 (see Figure 33) the URL of the REST endpoints must be defined.

Figure 33: Manual app creation wizard – Step 2: Endpoints

In Step 3 (see Figure 34) for each defined REST endpoint functions can be defined. The path can
contain parameters in the form of {parameter1}. This data format of the parameters must be defined in
the “Request Schema” as described in section2.3.2.3. If the function is called via an integration flow the
parameter can be mapped from the triggering event. The parameter will be replaced with the value of
provided by the event and the REST call will be executed.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 39 of 62

Figure 34: Manual app creation wizard – Step 3: Functions

The response of the executed REST call will be send as a response event. The response events for the
functions can be defined in Step 4. In the “Response Event Schema” you must described the data format
of the data that will be responded by the REST application (see section 2.3.2.3).

Figure 35: Manual app creation wizard – Step 4: Response Events

In the last two steps you can verify your input and finish the wizard. After that the application will
automatically appear in the applications list.

2.3.3.2 Send data

Once your application has been registered and verified to the MSB it is ready to receive information via a
function call and to send information to the MSB via an event. An event is send as JSON object with the
fields described in Table 6.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 40 of 62

Table 8: Description of fields contained in JSON object of an event

uuid UUID of the Service that sends the event.

eventId Id of the event as defined in the self-description of the Service.

priority Priority with which the event is to be processed by the MSB

dataObject JSON object that contains the data of the event.

The event is then sent to the REST endpoint (/rest/data) shown in Figure 36.

Figure 36: REST endpoint to send data

2.3.3.3 Registration and verification of a component

Upon first boot up of a service, the service connects to the MSB and provides a self-description (more on
how to achieve this and details on the self-description in section 2.3.2.2). At this point the component is
not yet visible to the user, who needs to activate it first. To do so the user has to navigate to the SMART
OBJECTS or APPLICATION tab, depending on the self-description of the component and click the
button for new components (“+”), as can be seen in Figure 37. The classification into smart objects or
application is based on the self-description, set by the developer. Its purpose is to allow easier distinction
for human users and has no further implication beyond that. As a rule of thumb, smart object should
contain at least one sensor or actuator.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 41 of 62

Figure 37: Activate new Component in GUI of MSB

The user is then asked to verify the component by inserting the security token which is part of the self-
description and should be provided by the developer. At this stage the user can also decide if the
component should only be visible to him or the entire organization (see Figure 38 below). Visibility
decides if other user can see the component when they connect to the MSB with their user credentials. If
they do not see the component, they cannot set up new information flows including the component.
However, they still might be affected, as information flows set up by one user by trigger actions in
organization wide visible components. An example might be a component which takes a considerable
amount of time to process data and blocks any other request in this state. One user may find the
component permanently blocked when setting up his information flow without any capability to identify
who is blocking the component, since he cannot see the integration flow of another component which is
invisible to him.

Figure 38: Security Token and Visibility Setting (MSB GUI)

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 42 of 62

2.3.3.4 Reviewing of registered components

After completion of the registration process, the new component will be listed in the appropriate tab
(SMART OBJECTS or APPLICATIONS) with its self-description. This description includes general
information like name and prose description of its general purpose, as well as specific information
regarding the outgoing events the component can throw and functions which can be linked to incoming
events, as seen in Figure 39. The component is now ready for the modelling of information flows. If the
user wishes to delete the component, he can do so at any time by selecting the component in the
respective tab, clicking the small garbage bin icon in the bottom left and confirming his decision.

Figure 39: Detailed Information about Component (MSB GUI)

2.3.3.5 Settings configuration for components via MSB

Optionally, the configurations tab, shown in Figure 40, allows the user to configure internal values of a
component remotely via the MSB. This feature is optional and has to be set up by the developer in the
program code of the component. If no remote configuration is allowed, the tab name is greyed out and
inactive. New parameters can be set by change the value on the right and pushing the orange save
button on bottom right. If the new value does not correspond to the required format indicated in the
middle row, the changes will not take effect. If a component is modified which is currently offline, the
changes will not take effect.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 43 of 62

Figure 40: Detailed View on Component - Configurations Tab

The Flows tab show all integration flows which the component is currently a member of (see Figure 41).
When activating a new component, this tab is empty. Clicking on the arrow on the right lets the user
jump directly to the selected flow.

Figure 41: Detailed View on Component - List of all associated Flows (MSB GUI)

2.3.3.6 Data routing with integration flows

2.3.3.6.1 General information about integration flows

On the one hand, the middleware approach replaces the otherwise required point-to-point connections
between the components and reduce the maintenance effort for the IT-personnel. On the other hand, it
takes over the function of the event listener for all components and allows the configuration of this
function at run time. This simplifies the adaption process in case changes to existing solutions are
required (e.g. replacement of an old component). It also simplifies the implementation of new solutions,
which rely on data or processing capabilities of existing components and can be configured at run-time
without shutdown of the entire system.

To understand how to design components for the use with the MSB, it is useful to first understand, how
the user configures his solution based on the available components. Figure 42 shows a simple example

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 44 of 62

for such a solution from view of a user who configures two components to communicate. Once the
integration process is complete, the left component can send information to the second one for further
processing. The user who implements the solution used a building block concept in a graphical user
interface to setup this connection. To achieve the desired information flow, three conditions need to be
met, which are represented in Figure 43:

 The components are registered with the MSB (self-description is provided) and activated.

 The information flow is modelled in the MSB by the user.

 The information flow is triggered by the first component in the chain at run-time.

Figure 42: Simple Information Flow modelled in the MSB GUI (only part of GUI is shown)

Figure 43: Steps to compete the Exchange of Information

It is important to understand that each component solely communicates with the MSB and does not per
se know preceding or subsequent component in the chain of information. This has implications on the
design as intrinsic knowhow between components cannot be expected and should therefore be avoided
and all contextually required information needs to be available in the self-description or needs to be
exchanged in the events.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 45 of 62

2.3.3.6.2 Modelling of an Information / Integration Flow

The MSB is technically able to map events from a component onto functions of the same component.
However, this capability should not be used in general to keep the load on the MSB low. Besides, the
latency of the MSB typically exceeds component-internal communication by a large margin due to the
underlying IP-based communication.

2.3.3.6.3 Initial Creation of an Integration Flow

To build a meaningful information flow, at least two separate components are required. In context of the
MSB a model for an information flow are called integration flow. Figure 44 shows the first step in creation
of such a flow in the INTEGRATION FLOWS tab which is initiated similarly to the activation of a
component. Once the blank flow is created, it needs to be named, while a description by the user is
optional. The modelling can then be initiated by clicking the Flow Designer tab (Figure 44).

Figure 44: First Step in Creating a new Integration Flow (MSB GUI)

2.3.3.6.4 Selection of Components for an Integration Flow

Within the flow designer view, all available components are show on the right side. If the desired
component is not shown, the list can be extended to show all smart objects or all applications by clicking
on the respective fields. If the component cannot be found, it has not been activated and the steps of
section 2.3.3.3 need to be competed again. The components, required for the integration flow need to be
dragged and dropped onto the main area, as indicated in Figure 45.

After dragging all components into the main area of the GUI, the user should check if all components are
positioned in the correct order according to the desired information flow from left (first component in
chain) to right (last component in the chain). This is not necessary but advised, as it improves readability.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 46 of 62

Figure 45: Drag and Drop of Components to initiate the Creation of a new Integration Flow

2.3.3.6.5 Selection of required Events and Functions for each Component

Before connecting the components, the user needs to select the appropriate event and function for
components he wishes to connect next. This is done by clicking on the drop down menu for the
component and then clicking the desired event or function as indicated in Figure 46. By default, the first
event from the list in the self-description is selected for all components. If a component does not supply
events, the first function from the list in the self-description is set as default. Selecting a function
manually may result in a second drop down menu to appear next to the previous one as can be seen in
Figure 47.

Figure 46: Selection of Event or Function from Drop Down Menu

This implies that the selected function may trigger one of the listed events. The user has to select the
desired event from this new list, unless the component is the last one in the chain, where the output
event is irrelevant. Due to this behaviour of the GUI it is strongly advised to begin the selection of events
and functions at the last component in the desired integration flow.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 47 of 62

Figure 47: Selection of Return Event based on preselected Function

2.3.3.6.6 Linking of Events to Functions

After the selection process the links between the components have to be set up. Links are always
initiated from an event towards a function. The user achieves this by clicking on the orange area of a
component with the event and dragging the mouse to the component with the function which he wishes
to link to. A successful link is indicated by an orange arrow between the two components, where the
arrow is directed towards the component which’s function should be executed. An example for
successful links can be seen in Figure 48.

Figure 48: Successfully linked Components

2.3.3.6.7 Mapping of Event Data to Function Parameter Inputs

If the selected functions require no input parameters, specific mapping of parameters can be forgone
and the flow is ready to be saved. However, in most cases a mapping of data from the event to the input
parameters of the corresponding function is required. The user does this by clicking the small orange dot
in the middle of each arrow which will result in a similar GUI to Figure 49. On the left all available data
from the event is displayed and on the right all input parameters are shown. For every parameter the
particular type is displayed as well.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 48 of 62

Figure 49: Detail View for Mapping Event Data to Input Parameters for a Function

The MSB is capable of simple type casts which require no further specification such as integer to float,
integer to string. Most input and all output parameters are specific to the component developers.
However, the parameters mentioned in Table 9 are always available for mapping on the side of the
event. The mapping is conducted by selecting the input and output parameters which are supposed to
be mapped, indicated by an orange background and clicking the button with the two arrows in the
middle. Once the mapping is completed it will show up in the bottom half of the screen, were it can also
be deleted by clicking the icon with the garbage bin. Once the user has mapped all function input
parameters to the respective event output parameters, he can click the orange save button in the bottom
right to save his changes. In general double mappings should be avoided, as they can lead to confusion.
If a double mapping occurs, the latest mapping, indicated by being lower in the list, takes precedence.
The mapping process has to be repeated for all links (all orange arrows in Figure 48), where mapping is
required.

Table 9: List of standard event properties

uuid UUID of the component which sends the event.

eventId ID given to the event by the developer

priority Priority set by component developer for transfer by the MSB which might be
relevant in case of high load. Possible values are:
0-low / 1(default)-medium / 2-high

postDate Time when event was thrown by the component.

recieveDate Time when the event was published to the MSB. The distinction is relevant
when a component is set up in such a way that it can function autonomously
without MSB connection (e.g. in remote regions without WIFI connection.
Optionally events can be buffered in this case and published to the MSB once
reconnected.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 49 of 62

2.3.3.6.8 Setting Conditions for Data Transfer

In some cases, the information of an event should only be forwarded to a function when specific
conditions are met, which were not foreseen by the developers who designed the components. In this
case the Conditions tab in the mapping view can be used to set conditions. Conditions can only be set
for the data associated with the current event. Other conditions, for example including information from
the previous event, are not configurable. In some cases, smart design of the integration flow using the
branching (section 2.3.3.6.9) and merging (section 2.3.3.6.10) can be used to achieve the desired results
in combination with conditions. A new condition is set by clicking the relevant input parameter form the
associated event and selecting the parameter on the left side and clicking the large button in the middle.
This yields a view with a drop down menu like Figure 50 from which the desired comparator can be
chosen. Once the user does so, he can set the compare value in a newly appeared field.

Figure 50: View to set Condition which incoming Events are forwarded to the next Component in the Flow.

2.3.3.6.9 Branching of Integration Flows

The length of integration flows, as in the number of event to function links, is largely unlimited. The MSB
allows more complex designs as well, beside strictly linear integration flows. It is possible to map one
event to several functions of one or more components, effectively creating branches in the flow, as
shown in Figure 51. In case a subset of these functions is from the same component, the component
needs to be dragged and dropped once for each individual mapping. If the branches do not merge again,
the user should decide if two separate integration flows (with two separate names) would improve the
overall overview.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 50 of 62

Figure 51: Branching Integration Flow where one Event is forwarded to Two Components

2.3.3.6.10 Merging of Branches in Integration Flows

The merging branches works in a similar fashion as linking and mapping (see Figure 52 for the final view
after linking). Once the data of the first event is mapped to the input parameters and saved by clicking
the button, the mapping of the data of the second input event can be conducted accordingly. The
mappings of the other event will appear in the list of existing mappings (lower half of Figure 49) and vice
versa.

Figure 52: Merging of Branches in an Integration Flow

2.3.3.6.11 Wrap up and Saving the Integration Flow

The final steps before the integration flow can be activated, is saving the current setting and activating
the flow. Before doing so, the user should be sure that the steps described before are completed. For
better overview they are mentioned here once again:

 Name and description represent the purpose of the integration flow sufficiently.

 All components are in the main area of flow manager (at least one square for each component).

 For each component the correct function / event is selected (lower half of the graphical
representation of the component).

 All required links are in place (orange arrows).

 All mappings are set as required for each link.

 All conditions (if required) are set (can only be checked in the respective detail views by clicking
the orange nobs in the middle of the arrows and switching to the Conditions tab).

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 51 of 62

If this is the case, the user can click the orange save button on the bottom right of the browser window.
As a result, the name of the integration flow in the list of flows on the left half of the screen will change
from light gray to dark grey, as seen in Figure 53.

Figure 53: Integration Flow after Saving

By default, the integration flow is still deactivated. To activate it, the user has to hit the toggle button to
the right of the name of the integration flow. The status of the flow can also be seen by a quick glance on
the colour of the icon to the left of the name. Activated flows are indicated by a green icon, while
deactivated ones are indicated by a black icon. The activation of the integration flow in the backend of
the MSB takes between 1 s – 10 s.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 52 of 62

3 Step by step implementation of test scenario for
Application Experiment: Health

This section presents a detailed step-by-step guide for integration with the system, which implements the
test scenario for Application Experiment: Health, as described in section 1.2.

3.1 A general overview

The system integration can be summarized in just six essential steps; Figure 54 provides a graphical
overview of these steps.

Figure 54: Integration steps

Medical device data is acquired by the means of a sensor integrated with MySignals. MySignals first
should login in eVida platform (Step 1) so it can retrieve user information (Step 2). After that, it will
register the device with Virtual Fort Knox (Step 3), so it can send the sensor data to VFK (Step 4). VFK
must them work this data into HL7 format and store it, so eVida can get it (Step 6) –after registering to
VFK (Step 5) – for easy display through the PHR interface.

The technical details of each step are provided in the following points.

3.2 Step 1: Login in eVida

The procedure to login in eVida is described in section2.1.4.1. The access_token obtained should be

stored, as it will be needed for Step 2 (3.3).

3.3 Step 2: Retrieving username from eVida

The username is obtained as described in 2.1.4.2 (GET logged user in eVida). This value is important,

as it will allow matching the sensor data read with the user.

Login in eVida
Retrieving

username from
eVida

Register
MySignals

device to MSB

Send data
(user and
sensor)

Step 1 Step 2 Step 3

Step 4

Get user
sensor related

data

Step 5

Register eVida
to MSB

Step 6

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 53 of 62

3.4 Step 3: Register MySignals device to MSB

To register the MySignals application as an Application to the MSB a POST request must be sent to
https://msb.vfk.de:8083/rest/smartobject/register (see Table 10). The registration process is described in
detail in section 2.3.3.1. Listing 3 shows the self-description of the MySignals MSB application. If the
registration has been successful, the HTTP Status Code 201 will be returned and the Application can be
verified via the MSB GUI with the token defined in the self-description (as described in section 2.3.2.2). If
the POST request returns an ERROR HTTP code or the verification is not possible you should check if
the self-description is defined correctly.

Table 10: POST request to register MySignals device to MSB

POST https://msb.vfk.de:8083/rest/smartobject/register

Parameters

Key Value

smartObject Self description as JSON.

Listing 3: Self-description of MySignals MSB application

{

 "uuid": "14f1c798-3ba7-4474-9706-4b5b54931449",

 "name": "MySignals",

 "description": "Displays live information about a Mysignal sensors",

 "events": [

 {

 "@id": 1,

 "eventId": "mysignals-live-information",

 "name": "Live System Information",

 "description": "Displays live information about a Mysignal sensors.",

 "dataFormat": {

 "dataObject": {

 "type": "object",

 "properties": {

"id": {

 "type": "integer",

 "format": "int64"

},

 "value": {

 "type": "string"

 },

 "ts": {

 "type": "string"

 },

 "sensor_id": {

 "type": "string"

 },

 "member_id": {

"type": "integer",

 "format": "int64"

https://msb.vfk.de:8083/rest/smartobject/register

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 54 of 62

 },

 "user_name": {

"type": "string"

 }

 }

 }

 }

 }

],

 "functions": [],

 "endpoints": []

}

3.5 Step 4: Send data

To send data from the MySignals device to the MSB an event must be send to the MSB via a POST
request to https://msb.vfk.de:8083/rest/data (see Table 11). A sample JSON for such an event is shown
in Listing 4. The event contains data about the sensor, the username in eVida, an ID of the data, the
member ID in the Libelium cloud and the value of the measurement. How to send data is described in
more detail in section 2.3.3.2.

Table 11: POST request to send data from MySignals device to MSB

POST https://msb.vfk.de:8083/rest/data

Parameters

Key Value

incomingData Data as JSON.

Listing 4: Sample JSON of MySignals Live System Information event

{

 "eventId": "mysignals-live-information",

 "priority": "0",

 "postDate": "2018-05-06 06:43:19+00",

 "uuid": "14f1c798-3ba7-4474-9706-4b5b54931449",

 "dataObject":

 {

 "sensor_id": "temp",

 "user_name": "diatomic",

 "id": 46452372,

 "value": "20.1",

 "member_id": 3638

 }

}

After the data has been received from the MSB, it must be defined where it will be forwarded to. Data
routing is defined in the MSB using Integration Flows. In our use case the data of the MySignals device
have to be forwarded to a data repository service. Therefore, the Integration Flow from Figure 55 must

https://msb.vfk.de:8083/rest/data

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 55 of 62

be created. This integration flow is triggered each time an event with sensor data from MySignals device
is received. The integration flow forwards the data to the “Data Repository Service” which stores the data
in a database using the data mapping from Figure 56. This is just a simple scenario to illustrate the
integration into VFK. But it can be easily extended to include any additional services.

Figure 55: Integration flow to store data in the data repository

Figure 56: Data mapping between Step 1 and Step 2

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 56 of 62

3.6 Step 5: Register eVida to MSB

For the integration of eVida to VFK a Node.js application is used, which acts as a backend component
for other eVida apps (e.g. a data visualization app) and communicates with the MSB using the MSB
client library for Node.js. Listing 5 shows how to use that library and register an application to the MSB. If
the registration has been successful “IO_REGISTRED” will be returned to the application and the
Application can be verified via the MSB GUI with the token defined in the self-description (as described
in section 2.3.2.2).

Listing 5: Register eVida Node.js application to MSB (Node.js)

// Import MSB client library

constMsbClient = require('./msb_client');

// Define MSB client

varmyMsbClient = new MsbClient("91d5cb0d-df40-4046-ba93-af2ad4fec60a", "eVida", "eVida

application that requests data from the MSB", "af2ad4fec60a");

...

// Connect to the MSB websocket interface

myMsbClient.connect();

// Register client on MSB

myMsbClient.register();

3.7 Step 6: Get user sensor related data

To request user data from the data repository service running in VFK an event must be send to the MSB.
This event is send by eVida application via Websocket using the Node.js MSB client library. The
definition of the event is shown in Listing 6. The event contains information about the username the
measurements belong to, the type of the measurement, the time range of the measurements and a
request id. The time range has to be defined in Coordinated Universal Time (UTC). The request id is a
number defined by the requesting application and will be asynchronously send back together with the
requested data. This enables the application to determine which response belongs to which
request.Listing 7 shows how to define the event and send it to the MSB using the MSB client library for
Node.js. It also shows how to define a function to receive the requested measurement data.

Listing 6: Data format of event to request pulse measurement from data repository service (JSON)

{

"eventId" : "RequestMeasurementData",

"name" : "Request MeasurementData",

"description" : "Request Measurement Data from Data Repository Service",

"dataFormat" : {

"DataObject_RequestMeasurementDate" : {

"type" : "object",

"properties" : {

 "username":{

 "type":"string"

 },

 "measurementType":{

 "type":"string"

 },

 "requestId":{

 "type":"integer",

 "format":"int64"

 },

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 57 of 62

 "from":{

 "type":"string"

 },

 "to":{

 "type":"string"

 }

 }

 },

 "dataObject":{

 "type":"object",

 "$ref":"#/definitions/DataObject_RequestMeasurementDate"

 }

 }

}

Listing 7: Code snippet of eVida application to send event (Node.js)

// Define data format

myMsbClient.createComplexDataFormat('DataObject_RequestMeasurementDate');

myMsbClient.addProperty('DataObject_RequestMeasurementDate', 'username', 'string', false);

myMsbClient.addProperty('DataObject_RequestMeasurementDate', 'measurementType', 'string',

false);

myMsbClient.addProperty('DataObject_RequestMeasurementDate', 'requestId', 'string', false);

myMsbClient.addProperty('DataObject_RequestMeasurementDate', 'from', 'date-time', false);

myMsbClient.addProperty('DataObject_RequestMeasurementDate', 'to', 'date-time', false);

// Add event to MSB client

myMsbClient.addEvent('RequestMeasurementData', 'Request Measurement Data', 'Request

Measurement Data from Data Repository Service', 'DataObject_RequestMeasurementDate', 'LOW',

false);

...

// Add function to MSB client

// Functions

myMsbClient.addFunction('ReceiveMeasurementData', 'Receive Measurement Data', 'Receive

requested measurement data from Data Repository Service', 'string', receiveMeasurementData,

false);

...

// Send event to MSB

myMsbClient.publish('RequestMeasurementData', {

username : "SampleUser",

measurementType : "Pulse",

requestId : 123456,

from : "2018-05-22T08:30:59.001Z"

to : "2018-05-22T08:30:59.001Z"

 });

...

// Receive function call from MSB (with requested measurement data)

functionreceiveMeasurementData(msg) {

console.info('Msg: ' + JSON.stringify(msg));

var data = msg["dataObject"];

varvalues = data["values"];

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 58 of 62

console.info('requestId:' + data["requestId"]);

for (vari = 0; i<values.length; i++) {

var value = values[i];

console.info('Entry: {}', i);

console.info('username:' + value["username"]);

console.info('measurementType:' + value["measurementType"]);

console.info('measurementTimestamp: ' + value["measurementTimestamp"]);

console.info('field_at0004: ' + value["fields"]["at0004"]);

console.info('field_at0022: ' + value["fields"]["at0022"]);

console.info('---');

 }

}

The incoming event triggers the Integration Flow shown in Figure 57 which calls the “RequestData”
function of the data repository service. The event data which specifies the requested data, are mapped
to the function parameters of that function (see Figure 58). After the data repository service has
executed the request, the data are sent back as response event “ResponseData” to the MSB. This
triggers the last step of the Integration Flow which forwards the response of the request to the eVida
application by calling the “Receive Measurement Data” function of the eVida application using the data
mapping shown in Figure 59. The MSB function call calls the function “receiveMeasurementData” of the
eVida application (see Listing 6) where the requested data can be processed further. The creation of
integration flows is described in detail in section 2.3.3.6.

Figure 57: Integration flow to request user data from data repository service in eVida app

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 59 of 62

Figure 58: Data mapping between Step 1 and Step 2

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 60 of 62

Figure 59: Data mapping between Step 2 and Step 3

3.8 Putting all together

The test is composed of the following elements:

1. eVida cloud.
2. MySignals cloud.
3. VirtualFortknox (VFK) cloud.
4. Virtual Server.

In the Virtual Server we will install the applications prepared for sending and receiving data.

The “Sender” application will retrieve the user info from the eVida cloud (3.2). After that, it will retrieve
last data from sensors database of MySignals cloud (3.3). Finally, the application will connect with the
VFK cloud and store on it the data retrieved before.

The “Listener” application will register in the VFK for listening events. When a data is stored in the VFK
cloud, and event is triggered in the Listener application and the data stored will be printed.

3.8.1 Requirements

The parameters necessary for making the test are:

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 61 of 62

 eVida connection parameters: user, pass, key and secret.
 MySignals connection parameters: user and pass.
 VFK connection parameters: appid and url.

How to obtain these parameters has been explained in previous sections.

Regarding the infrastructure, we will need a Virtual machine for executing the “Sender” and the
“Listener”.

Figure 60: “Mysignal-PyTest”Integration flow

3.8.2 Execution example

Prior to the execution we need to register the “Sender” and “Listener” applications in VFK. In this
example, we have registered the applications with the names “MySignals” and “PythonTest” respectively.
After registration, you have to create an “Integration Flow” for connecting the event coming from
“MySignals” to the event in “PythonTest”:

1. In the Step one use MySignals with event "Live System Information".
2. In the Step two use PythonTest with event "mysignals-live-information" and function

"print_ms".
3. Create the flow between them mapping all the parameters.

In the Virtual Machine you have to transfer the applications. When the applications are in the Virtual
Machine, add the connection parameters previously collected (eVida, MySignals and VFK) to the file
“MySignals.py”. Below an example of the variables and values you have to modify:

_MYSGINAL_USER_DATA='example@libelium.com'

_MYSGINAL_USER_PASS='example2018'

_EVIDA_USER='example'

_EVIDA_PASS='example1234'

_EVIDA_KEY='4c254837dabe22f721842c05549c10'

_EVIDA_SECRET='196b45fb87ffd57f1f75290d5e2474'

_VFK_APPID='24f1c798-3ba7-4474-9706-4b5b54931449'

_VFK_URL='http://vfk.com'

Finally, you have just to execute in two separate windows the “MySignals” and “PythonTest”
applications.

1. Execute “MySignals”:
python MySignals.py

2. Execute “PythonTest”:
cdvfk.msb.client.library.websocket.python

python3 main.py

In the shell where you executed the “PythonTest” the data stored will be showed.

H2020–761809: DIATOMIC

D3.3: Active and Healthy Ageing application experimentation
(supporting documentation)

DIATOMIC_D3.3_IPN_FF-20180529 Page 62 of 62

4 References
[1] “Healthy API documentation”, 2018. [Online]. Available: https://ge.evida.pt/APIdocumentation;

[Accessed: 09-Feb-2018]

[2] “MySignals, eHealth and Medical IoT Development Platform Technical Guide”. Available:
http://www.libelium.com/downloads/documentation/mysignals_technical_guide.pdf; [Updated on 12
March 2018]

[3] “Services Cloud Manager. Cloud Services Guide”. [Online]. Available:
http://www.libelium.com/downloads/documentation/service_cloud_manager_guide.pdf

[4] Libelium’sIoT Marketplace. [Online]. Available: https://www.the-iot-marketplace.com/cloud-
services/mysignals-cloud

https://ge.evida.pt/APIdocumentation
http://www.libelium.com/downloads/documentation/mysignals_technical_guide.pdf
http://www.libelium.com/downloads/documentation/service_cloud_manager_guide.pdf
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud

