SmartAnythingEverywhere

European
Commission

Smart Anything Everywhere Initiative

Area 3: Advanced micro-electronics components and Smart System
Integration Project: H2020—-No 761809

digtorr]ic

Digital Innovation Hubs boosting European
Microelectronics Industry

Health Experiment
Step-by-Step Integration

Author(s): Jodo Quintas, Sérgio Sousa, Matthias Schneider,
Rubén Hermoso

Status -Version: V1.1
Date: 02 March 2018
Last update: 23 March 2018
Distribution - Confidentiality: Public

Code: DIATOMIC Health_Experiment_Step_by Step_Integrat
ion_FINAL.docx

Abstract:

This manual provides a useful step-by-step guide for the extended eVida VFK My Signals integrated
platform.

© Copyright by the DIATOMIC Consortium

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Disclaimer

This document may contain material that is copyright of certain DIATOMIC beneficiaries, and may
not be reproduced or copied without permission. All DIATOMIC consortium partners have agreed to
the full publication of this document. The commercial use of any information contained in this
document may require a license from the proprietor of that information.

The DIATOMIC Consortium is the following:

PETTE e Participant organisation name et Country
number name

01 INTRASOFT International S.A. INTRA BE
02 F6S NETWORK LIMITED F6S UK
03 BioSense BIOS SRB
04 Synelixis Solutions SYN EL
05 Instituto Pedro Nunes IPN PT
06 Fraunhofer IPA IPA DE
07 InoSens INO SRB
08 Libelium Comunicaciones Distribuidas SL LIB ES
09 FastTrack FASTT PT

The information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 2 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Document Revision History

Date Issue Author/Editor/Contributor Summary of main changes

02.03.18 | V0.1 Sérgio Sousa (IPN) Initial version of the document

09.03.18 | V0.2 Matthias Schneider (IPA) VFK related content

13.03.18 | V0.3 Rubén Hermoso (LIB) MySignals related content

14.03.18 | V0.4 Sérgio Sousa (IPN) Document formatting and
review

15.03.18 | V0.5 Sérgio Sousa (IPN), Rubén Hermoso (LIB) | Document structure changes
15.03.18 | V1.0 Jodo Quintas (IPN) Review and acceptance
23.03.18 | V1.1 Sérgio Sousa (IPN) New section 2.1.3

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 3 of 57

H2020-761809: DIATOMIC

diatomic

Health Experiment — Step-by-Step Integration *—=
Table of Contents
1 Introduction 6
1.1 Goal 6
1.2 Test scenario 6
2 Modules description 7
2.1 eVida 7
2.2 MySignals 16
2.3 Virtual Fort Knox Cloud Platform 30
3 Step by step implementation of test scenario for Application Experiment: Health 53
3.1 Ageneral overview 53
3.2 Step 1: Loginin eVida 53
3.3 Step 2: Retrieving username from eVida 53
3.4 Step 3: Register MySignals device to MSB 54
3.5 Step 4:Send data 54
3.6 Step 5: Register eVida to MSB 55
3.7 Step 6: Get user sensor related data 55
4 References 57
DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 4 of 57

H2020-761809: DIATOMIC

diatomic

Health Experiment — Step-by-Step Integration *—=
List of Abbreviations

API Application programming interface

GUI Graphical user interface

HL7 Health Level Seven International

IPA Institute for Manufacturing Engineering and Automation

IT Information technologies

JSON Graphical user interface

MSB Manufacturing Service Bus (middleware supplied by VFK)

PHR Personal Health Record

REST Representational State Transfer

RIM HL7 Reference Information Model

SCM Services Cloud Manager

VFK Virtual Fort Knox

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 5 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

1 Introduction

This document presents a thoughtful guide on how to integrate an existing solution with DIATOMIC
platform. This platform contains several components — described in detail later — which can be integrated
separately. Users are not complied to integrate their solutions with all the components described here.
They can choose to integrate with the ones that best suit their needs.

For the purpose of this document, a full integration with all the components is described, so users can
have a broader view of all the potentialities of every component and the greater value added by
integrating then together.

1.1 Goal

Offer end users a cost effective platform for medical devices that could be utilized as an alternative for
measuring different health parameters without the need of a big investment in equipment.

1.2 Test scenario

Here a test scenario is presented. The goal is to have the sensor medical data acquired, stored in HL7
format, and easily available for viewing. Figure 1 shows the conceptual flow for the integration of the
different components.

1: Get user info ‘e'
| * @ IPN

INSTITUTO PEDRO NUNES

libelitm

3: Get user related
sensor data

=4 Fraunhofer
IPA

2: Post data
(sensor and username)

Figure 1: Components integration

Medical data is acquired by the means of a sensor integrated with MySignals. MySignals should retrieve
user information from eVida (1). After that it send the sensor and user related data to VFK (2). VFK must
them work this data into HL7 format and store it, so eVida can get it (3) for easy display through the PHR
interface.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 6 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2 Modules description

In this section, the different modules are presented and described. It is important to get familiar with all
the modules, as some preliminary steps on how to configure / setup the different them maybe required.
These instructions are important and should be followed in order to have a smooth integration.

2.1 eVida

eVida’s main objective is to provide the infrastructure and tools to quickly develop new applications and
deliver them to end-users. Therefore, it provides an answer to patient health self-management supported
by technology (https://www.youtube.com/watch?v=fwHnHbcpVHY). The platform already provides an
electronic personal health record and supports remote monitoring from devices.

2.1.1 Create a new account on the eVida platform

The first step is to create a user account on the eVida platform. Go to https://www.evida.pt and register
an account. As a logged user you can access the platform's web store.

By default, when a user access for the first time to the platform, the account is not set to a developer
account. To be able to develop applications for eVida it is needed to activate the developer option (Figure
2). Log in, go to Settings (1) in the sidebar, then Developer Settings (2) and toggle the option Connect
this account to a developer account to YES (3).

.

Web Store General Informati

Account settings

Change Password Developer Settings

Installed Apps By connecting to §developer account you will be able to submit new applications
to the App Marketfjlace and request secure keys to consume API servic93

Conn;t is NO
accounttp a
developer account

Settings

Log Out

Figure 2. Connecting account to a developer account

2.1.2 Create an OAuth Consumer

Authentication in eVida platform is done using OAuth2. This is an important step as it will allow the
retrieval of information, such as the user logged in.

To perform the OAuth2 flow, a Consumer Key is needed, which identifies your application. To get the
Consumer Key, go to Developer (1) section and then access APl access (2) tab. Once there, click
Create another Oauth Consumer (3) (Figure 3), fill the form — the field Redirection URI may be left
blank — and submit it. A Consumer Key and Consumer Secret will then be generated.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 7 of 57

https://www.evida.pt/

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
eVida Q
Dashboard
Developed Byyou APl access

2

</> Developer You may manage consumer credentials for authd3 p within the
App Marketplace as well authenticating your application usgfs on eVida
atform.

1

Authorize URL https:/auth.evida.pt/v2/authgfize/

‘Access Token URL https://auth.evida.pt/v2/token/

Create an OAuth Consumer

Figure 3: Create an OAuth Consumer
The Consumer Key and Consumer Secret are essential to obtain the access token (later described)
which will allow full integration with eVida’'s API [1].

2.1.3 Activate the PHR application

phrevida

We created an online
marketplace where you
can explore, install and
run apps. You can even
develop your own app
and sell your work. We'll
provide everything you

Yo

o

Personal Health Record

|
i

need to get you up and weCare Caritas Health Charts Secure Health Charts

running in no time!

‘OPEN APPLICATION

Personal Health Record m e tG b O | | C
Care

phrevida Metabolic.Care RIM - Graphics

Permitir acesso

Figure 4: Activate PHR application in eVida
To activate the PHR application (Figure 4), already available in eVida, one needs to first access it once.
The following steps describe the process to activate the PHR:
1. Login in eVida: https://www.evida.pt;

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 8 of 57

https://www.evida.pt/

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2. Locate the “Personal Health Record” application in the “Web Store” and click on it;
3. Click on “OPEN APPLICATION”;
4. Allow application’s access by clicking “Permitir acesso”.

A graphical representation of these steps is shown in Figure 4

2.1.4 eVida’s API

eVida platform provides a RESTful API [1] which allows getting and posting data between applications
easy.

To demonstrate the interaction with APIs, here is used Postman, which is a tool for APl developers
(https://www.getpostman.com/). It allows an easy understanding and interaction with the REST APIs
here presented.

2.1.4.1 Step 1: Login (getting the access token)

To get access to eVida's API first an access token has to be obtained. This is achieved through a POST
request to https://auth.evida.pt/v2/token with the Headers and Parameters shown in Table 1.

POST https://auth.evida.pt/v2/token

Headres

Key Value

Authorization Basic Base64(<consumer_key>:<consumer_secret>)

Parameters

Key Value

client_id <consumer_key>
grant_type password
username <evida_username>
password <evida_password>
scope user

Table 1: POST request to get an eVida access token. Base64() is a function to create a Base64 encoded
string (e.g.: https://lwww.base64encode.org/).

Add this data to Postman and hit ‘Send’; the result should look like the figure below.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 9 of 57

https://www.getpostman.com/
https://auth.evida.pt/v2/token
https://www.base64encode.org/

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

NEW I:I] Runner Import D_ Builder

Mo Environment 'ﬂ'
https//auth.evid @ [] [] []

POST hrps:/fauth.evida.pr/v2/token Params Save

aders (1) Body ® Pre-request Script Code

% form-data x-www-form-urlencoded raw binary

Key Value Description Bulk Edit
client_id st Mg ey T T Y RN et
grant_type password

username

password

<N << <]

scope user

Body Cookies Headers (10) Test Results Status: 200 0K Time: 453 ms

Pretty Ra Previe JSON

“access_token": “FEEREssdnan, Search for VoA Al
"token_type": “bearer”,

"expires_in": 31536008,

"refresh_token": "6168111f5b",

"scope™: "user"

i

Mok W

Figure 5: Postman POST response to https://auth.evida.pt/v2/token

The response will provide the access_token, which is the parameter to be used in all future eVida API
calls.

2.1.4.2 Step 2: Getting the logged user
GET logged user in eVida:

GET https://api.evida.pt/users?bearer_token=<access_token>

Table 2: GET request to retrieve logged user

The response will look like:

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 10 of 57

https://auth.evida.pt/v2/token

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

NEW I:I] Runner Import D_ Builder
Ne Environment
@ | hmpsi/apievida @ [] []
GET hrps:/fapi.evida.pt/users?hearer_token= 4T Params Send v Save
Authorization Code
Type No Auth
Body (10) Status: 200 0K Time: 221 ms
Pretty JSON
i-k
2 "is_developer”: trus,
3r Tuser': {
4 "username™: "Fpsa’,
5 "is_superuser”
["Ffirst_name’
7 "last_name": N
8 "is_staf false,
9 "last_login 13-82-86 14:06:35.381854",
1e "date_joi 5-11-2@ 1@:53:11.893721",
11 "email": "¢ Bl 3"
12 "resource_uri"
13 I
14 "resource_uri”: null
15 }

Figure 6: Postman GET response to https://api.evida.pt/users

This request retrieves some information about the logged user in eVida platform. The field “username”
should be saved for further reference.

GET demographic information about the user:

GET https://ge.evida.pt/PersonalProfile/items
Headres
Key Value

Authorization Bearer <access_token>

Table 3: GET request to retrieve user demographic information

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 11 of 57

https://api.evida.pt/users

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

NEW I:I] Runner Import D_ Builder
) Mo Environment 'ﬂ'
[] L] [] [] ® | hupsig @
GET hrrps://ge.evida.pt/PersonalProfile/items Params Send hd Save
Authorization Headers (1) Pre-request Script Tests Code
Key Value Description Bulk Edit Presets
Authaorization Bearer 3R
Body Cookies Headers (6) Test Results Status: 2000K Time: 410 ms
Pretty Raw Preview JSON
1~ |{
2 "arrayGenEntityItems": [
3~
4 "itemId": 3289,
5 :
& "username":
7 "genEntityId": 4,
8 "is_deleted": false,
9 "created_date": "2015-11-20",
108 "updated_date": null,
11 "deleted_date":
12 "parent_id": null,
13 "yersion_data": 1448837161611,
14 "last_modified": 1518111613968,
15 "concurrency_control_counter™: 2,
16 "userProfileld": @,
17 "srchetypelnternslld™: @,
18~ "fieldvalues": {
19 "country": "Portugal”,

health_number": 123456789,

: "Coimbra",
22 "birth_date": “R88d<dy-ai
23 “sex": "Masculing”,
24 "jurisdiction": "Coimbra”,
25 "birth_place": "Maternidade Doutor Denisl Matos",
26 "telephone": 123456789,
27 "postalcodg™: "383@-269",
28 "name™: "iEogiy TewaE",
29 "cellphone": 123456783,
38 "education_level™: "MASTER",
31 "email™: “assaliipe gl
32 1
33 H
34 1,
35 “nextURI": ™"
36 "numberOfEntitiesItems": 1,
37 "totalNumberCfRecords™: 1
EE |

Figure 7: Postman GET response to https://ge.evida.pt/PersonalProfile/items

Getting list of shared profiles

https://ge.evida.pt/otherUserProfile

Headres
Key Value

Authorization Bearer <access_token>

Table 4: GET request to retrieve list of shared profiles

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 12 of 57

https://ge.evida.pt/PersonalProfile/items

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

NEW I:I] Runner Impart D Builder

No Environment

[] [] ® | hupsi/geevida. @
GET httpsi//ge.evida.pt/otherUserProfile Params Send v Save
Headers (1) Code
Key Value Description Bulk Edit Presets
Authorization Bearer *# & g4
Body @ Status: 2000K Time: 386 ms
Prety JSON
T If
2+ aRE: {
3 B
" "name” -
5 "numbe: null’
6 "notes": “null",
7 "caritasltemId": “1289",
8~ "permissions": [
g g
18 "14n
11]
12 ¥
13

Figure 8: Postman GET response to https://ge.evida.pt/otherUserProfile

This request will return the list of users that have shared information with the logged user in PHR. This is
very useful as one user can have access to multiple users’ data information, allowing for one user being
able to update others users medical information.

The data follows the structure:
{

“username”: {
“email”: .

»
.

}s

}
The important data to retrieve is the “username”.

2.1.4.3 Step 3: Posting data to eVida (Archetypes)

eVida provides several Archetypes, where users can store sensor medical data in HL7 format. Below are
presented the different archetypes supported at the moment.

Oximetry:
https://ge.evida.pt/indirect_oximetry?access_token=<access_token>
Parameters
Key Value

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 13 of 57

https://ge.evida.pt/otherUserProfile

H2020-761809: DIATOMIC

diatomic

Health Experiment — Step-by-Step Integration

*———0

apiRequest.userProfileUsername
measurement_date
measurement_time

at0036

at0006

<username>
15/01/2018

18:16:54

Nonin Onyx Il 9560 Oximeter

97/100

Table 5: POST request to send data to the Oximetry architype. NOTE: at0006 and at0036 are fields for the
Oximetry archetype, as defined in openEHR / HL7 v3 RIM

c

Runner Import

Key
apiRequestuserProfileUsername
measurement_date
measurement_time
at0036
at0006

Body 7

Pretty JSON
"errors": [1,
"validetionMessages": [],

4 "validSubmissionHardCoded": true,

5 "validSubmissionDrocls": true,

6 "hasAlerts": false,

7 "executedDroolsRules": true,

8 "droolsErrorsBylLanguage": {},
"droolsCustomAlertsByLanguage": {},

18 "newResourceID™: 3748

1 3

https://ge.evida.pt/indirect_oximetry?access_token=3ffa

[] [] []
POST
Body ®
® form-data w-www-form-urlencoded raw

No Environment

Params Send v Save

® | hupsfigee @

Value Description Bulk Edi

08/02/2018
16:00:00
MNenin Onysx 11 9560 Oximeter

97/100

Status: 201 Created Time: 1786 ms

Figure 9: POST response to https://ge.evida.pt/indirect oximetry

It is possible to post to a user other than the logged user. That is why having a list of the users that share
the profile with the logged user is useful for this step.

Following are presented the other archetypes supported by eVida. The procedure to post data to those
archetypes is similar to the method described above; only the data must be adjusted accordingly.

Pulse (Heart Rate):
https://ge.evida.pt/pulse

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx

Page 14 of 57

https://ge.evida.pt/indirect_oximetry

H2020-761809: DIATOMIC

Health Experiment — Step-by-Step Integration

diatomic

*———0

!

pulse
(38 /pulse/{itemid}
Ipulse/itemid}
[E3 /pulse/items
(3 /pulse

M /pulse

Implementation Notes
Adds a new pulse to the repository

Show/Hide

List Operations = Expand Operations = Raw

Find pulse by ID

pulse by ID
Find all pulse
Get pulse configurations.

Add a new pulse to the repository

biEiaid /pulse/{itemid}

Parameters

Parameter Value Description
userProfileld Id of the user to whom this record belongs
at1037 Radial_Artery_-_Left (default) * Data Type: siring

atle3s Data Type: string

atleas Present (default) ¥ Data Type: string

ateals Standing (default) ¥ Data Type: string

atleze Data Type: string

at@a85 Regular (default) v Data Type: string

atenad Data Type: real

at1e23 Data Type: string

at1e22 Data Type: string

atlelg Palpation (default) v Data Type: string

at1e1s Data Type: string
measurement_time Data Type: time
measurement_date Data Type: date. Required.

Delete a record from pulse

Body Weight:
https://ge.evida.pt/body_weight

Figure 10: Pulse archetype

Ibody_weight

(38 /body weight/{itemid}

m /body_weight/{itemid}
/body_weight/items
/body_weight

POST

Implementation Notes
Adds a new body_weight o the repository

/body_weight

Showi/Hide

List Operations = Expand Operations = Raw

Find body_weight by ID

Update body_weight by 1D
Find all body_weight

Get body_weight configurations.

Add a new body_weight to the repository

measurement_date
atea2s
atee24

ateeas

measurement_time

bt /body weight/{itemid}

Lightly_clothed/underwear (default) v

Parameters

Parameter Value Description

userProfileld Id of the user to whom this record belengs.
ateees Data Type: real

Data Type: date. Required
Data Type: string
Data Type: string
Data Type: string

Data Type: time

Delete a record from body_weight

Figure 11

Blood Pressure:

: Body weight archetype

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx

Page 15 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

https://ge.evida.pt/blood_pressure

/blood_pressure Show/Hide | List Operations | Expand Operations | Raw
/blood_pressure/{itemid} Find blood_pressure by ID
m /blood_pressure/{itemid} Update blood_pressure by ID
/blood_pressure/items Find all blood_pressure
/blood_pressure Get blood_pressure configurations

358 /blood_pressure Add a new blood_pressure to the repository

Implementation Notes

Adds a new blood_pressure to the repository

Parameters

Parameter Value Description

userProfileld Id of the user to whom this record belongs.

measurement_date Data Type: date. Required

at1es2 Data Type: string

at@oos Standing (defauly) ¥ Data Type: string

atenes Data Type: real

ateees Data Type: real

aten3il Data Type: string

at1ee7 Data Type: real

atle3s Data Type: string

atlee6 Data Type: real

measurement_time Data Type: time

atlees Data Type: real

at1e3s Auscultation (default) ¥ Data Type: string

atle34 Data Type: string

ateo14 Right_arm (default) ¥ Data Type: siring

ateo13 Adult_Thigh (dsfault) ¥ Data Type: siring

at1043 Alert_8&_awake (default) ¥ Data Type: siring

atlp42 Data Type: time

atiele Phase_IV (default) ¥ Data Type: string

- | hd

Figure 12: Blood pressure archetype

2.2 MySignals

MySignals SW includes three different modes to access all the information gathered from the sensors
(Figure 13):

e Standalone Mode ([2], page 35): MySignals does not send the data. It is just visualized on the
TFT screen.

e Bluetooth Connection Mode ([2], page. 48): MySignals send the data to a mobile phone using
the BLE connection. The data is gathered and visualized by the MySignals App ([2], page 46).
Then if the Cloud option is enabled, the data will be also transferred to the user's account at the
Libelium Cloud.

e Server Connection Mode ([2], page 65): MySignals uses the WiFi connectivity to send the data
directly to the Libelium Cloud.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 16 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Figure 13: MySignals’ accessing information modes

2.2.1 MySignals Account

This guide will describe briefly necessary steps that need to be accomplished in case any end user or
developer wants to integrate any platform with MySignals Cloud. MySignals Web Server Application is a
real-time large-dataset viewing and plotting tool and has built-in data analysis functionality. It is very
user-friendly and contains many powerful built-in features. MySignals Web Server Application is an
Application that allows you to configure MySignals for creating profiles and users and help you to
visualize all the data measured. In order to access to the MySignals web application is necessary to
have SCM account and a valid license. SCM stands for “Services Cloud Manager”, and is Libelium's
platform from where you can manage your devices a Cloud Services:

1. To create a free SCM account please fill this form and click in the validation email that you will
receive:
https://cloud.libelium.com/register
(If additional help is needed please check the Services Cloud Manager Guide [3])
2. To activate your license you will need to follow this steps:
¢ Obtain a license: in case you are a developer and want to create your own solution on the top of
MySignals platform, you will have two different ways to obtain a license.

o Diatomic consortium has provided me one MySignals hardware device: Libelium will
give some free of charge MySignals devices to few developers/SMEs, so that they can
test the technology and use it for their developments. In this case you will need to contact
projects@libelium.comso that Libelium team can manage your request and provide to you
a PRO developer license for free, valid within the lifetime of Diatomic project..

o | have decided to buy one MySignals hardware device: in case you decide to acquire
any of the MySignals kits available, you will also need to buy your MySignals license from
Libelium's 10T Marketplace [4] or from your Sales agent.

¢ You will receive in your email the license activation code.

e You must click in the activation link that you will receive by email
After these steps you can start using MySignals Cloud service with the Website, Mobile APP and
Developer API, in the terms and quotas contained in the license that you purchased.

As special arrangement for Diatomic project, in case you are not interested in the hardware, but you
need some sample data in order to develop your own solution on the top of MySignals cloud, Libelium
will enable a test account for developers so that you can test Libelium's API, and interact with it. Note
that in this case, you will not receive any activation code and you will not be able to have access to all
the functionalities of MySignals Cloud. In order to obtain a test account, you will need to contact
projects@libelium.com. Libelium team can manage your request and provide you the credentials. This
account will be valid within the lifetime of Diatomic project.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 17 of 57

https://cloud.libelium.com/register
mailto:projects@libelium.com
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud
mailto:projects@libelium.com

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2.2.2 License activation

The “Licenses” section gives control of the licenses for the SCM. Licenses enable services for your
devices. The “My Licenses” panel lists the currently active licenses and the historic data of all the expired
licenses. If you recently purchased a License, go to the “Get Licenses” panel (Figure 14) to enter its
activation code.

License activation codes are unique and only one use is allowed (one license only applies to one user, to
one account). Despite the ownership of one device can be transferred (and one device can be managed
by several users), the ownership of a license cannot be transferred.

Any license has an expiration time associated to it. It is important to note that time starts running from
the moment the user activates it by entering its activation code (after entering the activation code of a
license, it may be required to activate it in the “Service” panel).

If the user has one active license and activates a new one, time keeps running for both the old and the
new licenses (in other words, time is never paused).

The “My Licenses” panel shows the licenses and the status of each one. The “Active” tab shows the list
of the licenses which are currently active, and the “Expired” tab shows the list of previously used
licenses.

a EE) =]

e ———
Figure 14: MySignals "My Licences" panel
The information displayed is:

License ID: Identification number

Service: Service and type provided by the license

Activated: Date of activation

Expires: Date of expiration

License registration is done in the “Get Licenses” panel (Figure 15). It is a 2-step procedure: enter a valid
license activation code (Figure 16) and confirm the action (Figure 17).

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 18 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

P Get Licen: SCS
o @
i Add License
& Comedbyoters @

Add License

B Get Licenses
Q rouses o 0

Figure 15: MySignals "Get Licences" panel

Entering a Single Activation Code will register one license. A Group Activation Code will register all
devices belonging to the Sales Order, but not the licenses it may contain.

Add License

Figure 16: Add License Step 1

Add License

O
o

Confirmation

License Number:

| accept the Terms & Conditions

Figure 17: Add License Step 2

The SCM will validate the activation code, displaying a visual confirmation. When the process is finished
successfully, a message will show that the license has been correctly added to the “My Licenses” panel
(Figure 18).

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 19 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Success!

License added

Figure 18: License added successfully

If the process could not be finished correctly, a message will notify the error. For example, “invalid
activation code: please check that the activation code you entered is valid” (Figure 19).

Something went wrong

License not valid

Figure 19: License invalid

2.2.3 API Cloud

Developers may relocate the information stored in the Libelium Cloud to a third party Cloud server easily
using the API Cloud provided.

2.2.3.1 A general overview

Libelium MySignals comes with a Cloud API that allows us to read data from our account. We can see a
list our members and read the values measured for a user by MySignals. This data available in this
RESTful API can be used by the customer to create new developments.

There is no need to install anything but you can go to the representation of the API in Swagger format
(Figure 20): https://cloud.libelium.com/mysignals documentation/api web/

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 20 of 57

https://cloud.libelium.com/mysignals_documentation/api_web/

° o
H2020-761809: DIATOMIC dlatomlc
*———0

Health Experiment — Step-by-Step Integration

API Documentation http://cloud.libelium.com/mysignals_documentation/api_web/sv Authorize Explore

MySignals Cloud API MySignaIsﬂ

© Libelium Comunicaciones Distribuidas S.L

Before using read the Terms & Conditions of MySignals

auth Show/Hide List Operations = Expand Operations

LOS8 /auth/login Login into the system
members Show/Hide List Operations | Expand Operations
/members Read
values Show/Hide List Operations = Expand Operations

fvalues Read

Figure 20: MySignals API in Swagger format

Here you can browse all the available methods of the API and see the parameters that you need to use.
It is possible to test the API from here following steps

2.2.3.2 Step 1: Login (getting the access token)

Click over ‘fauth/login', fill the form with your email and password and click Try it out!". If you provided the
right data you should see something like this:

API Documentation . i ysh) i Authorize ~ Explore

MySignals Cloud API MySignaIsﬁ

© Ubellum Comunicaciones Distribuldas S.L

Before using read the Terms & Conditions of MySignals

auth Showriide List Operatons Expand Operations
/auth/login Login into the system

Implementation Notes
Login Into the system. It returns a token that needs to be used In all the future apl calls.

Parameters

Parameter Value Description Parameter Type Data Type
email [yourg@email com|] formData string
password wrareeenne formData sring

Response Messages
HTTP Status Code Reason Response Mode! Headers

200

Try it outt

Curl

curl -X POST --header 'Content-Type: application/x-www-form-urlencoded' --header 'Accept: application/json' -d ‘email-s

»
Request URL

http://cloud_libelium com/mysignals/api/auth/login
Response Body
{

“token": “eyJOeXAi0iJKV10iLCIhbGCi0iIIUZIINIDY . eyInd19pZCIGINNSCIRIDXNADGLiZWXpAWOUY 29t IFtKZXZIDGIWZXIdIiwiZId fcGY
}

»

The response body contains the token that you should use to access to your data in the following steps.
Click 'Authorize’, write 'Bearer <your token>" and click authorize:

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 21 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Available authorizations
Api key authorization

n header

value: |Bearer eyJOeXAIOWKV1C

Authorize ‘

2.2.3.3 Step 2: Get list of your members

Click in '/members' section and then “Try it out!” button. You should see a list with your members. If you
don't see it please make sure that you followed all the instructions of the previous step (Login).

members Show/Hide List Operations = Expand Operations

/members Read

Implementation Notes
Get a list of the current members.
This method requires authorization token (see /auth/login)

Response Messages o
HTTP Status Code Reason Response Model Headers

200

Try it out!

Curl

curl -X GET --header 'Accept: application/json' --header 'Authorization: Bearer eyJ0eXAi0iJKV1QiLCJhbGci0iJIUzI1INiJ9.ey

Request URL

http://cloud_libelium_com/mysignals/api/members

Response Body

{
"data": [

*1d®:9,

"name"”: "Adah",

"surname": "Okuneva",

"picture": "http://cloud_libelium_ com/mysignals/uploads/members/W47zuphkHgE10Dux.jpg",
"description”: "In dolor optio harum consectetur.",

"height": "158",

"weight”: "114",

"birthday": "1974-04-12",

With all the data that this method retrieves, you should have information enough to develop a webpage
that could be similar to the one presented on the following image:

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 22 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

MySignals ’?AEMO

Updates Devices Members Departments AccountSettings Demo User 2 (p... @
ODE ' (2]

& TRAUMATOLOGY

Member
(‘) Abbie Ratke
_ <o Name: Abbie Height: 182 cm
Surname: Ratke Weight: 74 Kg
Member ID: 2969 Birthday: 12 Dec 1985

2018-03-12 15:48:22

Lastupdate: 1520869702UTCC

Department: Traumatology

2.2.3.4 Step 3: Get the sensor values of a member

Click '/values' section and fill the parameters as in the picture. Then click “Try it out!” button. In this case
you will need to introduce the sensor_id so that you can retrieve the desired information.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 23 of 57

H2020-761809: DIATOMIC
Health Experiment — Step-by-Step Integration

diatomic

*———0

values
Nalues

Implementation Notes
Get sensor values of @ member.

This method requires authorization token (see fauth/login)

Parameters
Paramerer value
sensor_id temp

member_id 1

ts_start 2016-01-01 00:00:00
ts_end 2017-01-01 00:00:00
Limit 5

cursor L]

order deac

Response Messages
HTTP Status Code Reason

208

Try it oul!

Curl

curl -X GET --header 'Accept: application/json’

Request URL

Description

Response Model

show/Mide | List Operations = Expand Operations
Read
i
Farameter Type Data Type
query string
query intager
query date-time
quéry date-time
query nteger
query integer
query string
Headers

--header 'Awthorization: Bearer eyJBeXAiOiJKVIQiLCIhbGeciOilIUzIINIID. ey

http://clovd_Llibelium_com/mysignals/api/values?sensor_id=tempimember id=1&ts_start=-2016-81-81%2000%3A00%3A006ts_end=281

Response Body

i
"data": |
i
*id": 44383,
*walue": "29.46",

"ts": "2016-09-28 05:18:59",

sensor_id: “temp®,
*member id": 1

*id": 44282,
*walue": =33.54",

"ts": "2016-09-28 82:89:59",

*sensor_id": “"temp®,
*member_id": 1

"id": 43842,
*wvalue": "33.95",

"ts": "2016-09-27 16:49:59",

Sensor_ids available for retrieving data are:

L3

sensor_id name units

position Body position 1 supine, 2 left, 3 right, 4 prone,
5 stand or sit, 6 non-defined

position_x X axis acc g

position_y Y axis acc g

position_z Z axis acc g

temp Temperature °C

emg_cpm Muscle contraction |cpm

ecg_bpm Heart rate bpm

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx

Page 24 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
airflow_ppm Respiratory rate ppm
gsr_us Conductance HS
gsr_ohms Resistance ohms
blood_dias Diastolic pressure mmHg
blood_syst Systolic pressure mmHg
blood_bpm Heart rate bpm
Spo2_oxy Oxygen saturation %
spo2_bpm Heart rate bpm
gluco_mg Glucose mg mg/dI
gluco_mol Glucose mmol mmol/|
spir_pef PEF spir_pef
spir_fev FEV1 spir_fev
snore_spm Snore rate spm
scale_ble_weight Wheight kg
scale_ble_bodyfat Bodyfat %
scale_ble_bonemass |Bonemass %
scale_ble_musclemass | Musclemass %
scale_ble visceralfat |Visceralfat %
scale_ble_water Water %
scale_ble_calories Calories kcal
blood_ble_dias Diastolic pressure mmHg
blood_ble_syst Systolic pressure mmHg
blood_ble_bpm Heart rate bpm
spo2_ble_oxy Oxygen saturation %
spo2_ble _bpm Heart rate bpm
gluco_ble_mg Glucose mg/dl
gluco_ble_mmol Glucose mmol mmol/l
eeg_ble_attention EEG Attention %
eeg_ble_meditation EEG meditation %
temp_ble Temperature °C
button_ble Alarm button 0 off, 1 on

2.2.3.5 Step 4: Last member data for all the sensors

The previous method requires specifying the sensor_id. Alternatively there is another method that
allows to request all the last values registered for all the sensors. Click ‘/values/last member_data/
section and fill the parameters as in the picture. Then click “Try it out!” button.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 25 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

GET fvalues/last_member_data Read

Implementation Notes
Get last sensor values of a member.
This method requires authorization token (see fauth/login)

Parameters i)
Parameter Value Description Parameter Type Data Type
member_id 8 query integer

Response Messages

HTTP 5tatus Code Reason Response Mode Headers
2e8

Try it oull

Curl

curl -X GET --header 'Accept: application/x.webapi.vl+json’ --header 'Authorization: Bearer eyJB8eXAi0iJKV10iLCJIhbGei0dil

¥
Request URL

https://api.libelium.com/mysignals/values/last_member data?member id=8

Response Body
{ -
*id=: 17328008,
“value": "4",
"ts": "2017-85-08 15:02:28+02:08",
"sensor_id": “"position”,
"member_id": 8

“id=: 17328089,

“value": "8.06",

"ts®: "2817-05-08 15:82:28+82:00",
"sensor id": "position x",
"member_id": 8

"id*: 17328818,

"value": "@8.12",

"ts®: "2017-85-08 15:02:28+02:808",
“sensor_id": “pesition_y",
"member_id": 8

2.2.3.6 Step 5: Get alist of sensor raw data

Click 'fraws' section and fill the parameters as in the picture. Then click “Try it out!” button. This method
will answer with all the members that have linked any sensor data which wave signal can be represented
graphically. You will need to keep the ID so that you can use it on next step.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 26 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Iraws Read

Implementation Notes
Get a list of the avallable sensor raw values of a member.
This method requires authorization token (see /auth/login)

Parameters 0
Paramete: value Descriptior Parameter Type Data Type

sensor_id ecg_raw query string

member_id 1 query integer

ts_start 2016-01-01 00:00:00 Query date-time

ts_end 2018-01-01 00:00:00 Query date-time

Response Messages
HTTP Statu: de Reasor Response Mode

200

Try itout!
Curl

curl -X GET --header 'Accept: application/x.webapi.vl+json' --header 'Authorization: Bearer ey)@eXAi0iJKV1QiLCJhbGci0il

Request URL

http://cloud libelium_com/mysignals/api/raws?sensor_id=ecg rawSmember id=1&ts_start=2016-01-01%2000%3A00%3A00&ts_end=2€

»

Response Body

{
“data”: |
{
*idv: 7,
“sensor_id": "ecg_raw",
*member_id": 1,
"ts": "2017-02-66 15:85:22+082:00"
|
{
*id": 2,
"sensor id": "ecg raw",
“member_id": 1,
"ts": "2017-01-31 18:56:03+02:00"
|

Sensor_ids that have a wave signal representation available are:

Sensor_id Name

airflow_raw Airflow Wave Signal
ecg_raw ECG Wave Signal
emg_raw EMG Wave Signal
snore_raw Snore Wave Signal

The method returns a list of the available raw data that can be requested in detail with the following
method, as mentioned before.

2.2.3.7 Step 6: Get detail of sensor raw data

Click '/raws/{id}' section and fill the parameters as in the picture. Then click “Try it out!” button.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 27 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Jraws/{id} Read by id

Implementation Notes
Get sensor raw values.
This method requires authorization token (see /auth/login)

Parameters i]

id 7 path string
Response Messages

HTTP Status Code Reaso Response Mode! Headers
200

Try it out!
Curl

curl -X GET --header 'Accept: application/x.webapi.vl+json' --header 'Authorization: Bearer eyJ@eXAi0iJKV1QilCJhbGci0il

»
Request URL

http://cloud_libelium_com/mysignals/api/raws/7
Response Body

{
“data*: {

*id%s T,

"sensor_id": "ecg_raw",

“member_id": 1,

"ts": "2017-02-66 15:05:22+02:007,

“values_json": {
parts_received: 1,
"parts_total": 1,
“period_ms": 10,
“values™: [

This method answers with all the necessary information for representing a wave signal graphically on
your web page. You will be able to develop a tab in your dashboard that shows for example the ECG
Wave Signal, as follows:

MySignals ’?,‘%NE)CE Updates Devices Members Departments AccountSettings Demo User 2 (p... @ @

< Heart Rate Abbie Ratke

T d: 13m h 2018 01:00
uesday, arc] Tuesday, 13 March 2018 01:00

Heart Rate (bpm)

ECG Wave Signal

2018Mar13-01:0 ¥

@ Time window 5 secs

© Libelium Comunicaciones Dis

2.2.4 PHP example

There is an example (Figure 21) that you can download from:

http://downloads.libelium.com/mysignals/mysignals web/api cloud vl.zip

Necessary steps:

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 28 of 57

http://downloads.libelium.com/mysignals/mysignals_web/api_cloud_v1.zip

H2020-761809: DIATOMIC
Health Experiment — Step-by-Step Integration

diatomic

*———0

e Extract the zip with the example

¢ Download the ‘httpfull’ library and place it in the /includes directory

http://phphttpclient.com/downloads/httpful.phar

Edit the file example.php and fill $email and $password with your values

e Go to your web browser and load the example.php page

e This will log you in the system, get a list of your members and get the latest 5 temperature values

of one of your users
/x

Copyright (C) 2016 Libelium Comunicaciones Distribuidas S.L.
http://www.libelium.com

This program is distributed WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

CEE T T

By using it you accept the MySignals Terms and Conditions.

* You can find them at: http://libelium.com/legal

* Version: 0.1
* Design: David Gascon

include('includes/httpful.phar');

// Config
$email = 'your@email.com';
$password = "your_password';

// API Vars
$api_base = '"https://api.libelium.com/MySignals’';

$api_headers = ['Accept' => 'Application/x.webapi.vl+json'];

//1.- Login

$parameters = json_encode([
'email' => $email
'password' => $password

1);

$response_login = \Httpful\Request::post($api_base . '/auth/login')

->sendsJson()
->body($parameters)
->addHeaders(%api_headers)
->send();

echo "1.- Login:
<hr>".%response_login->raw_body."<hr><br=";

//Save the Token in the header array.
if(%$response_login->code == 200){

$api_headers['Authorization'] = 'Bearer '.$response_login->body->token;

}

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx

Page 29 of 57

http://phphttpclient.com/downloads/httpful.phar

° o
H2020-761809: DIATOMIC dlatomlc
*———0

Health Experiment — Step-by-Step Integration

//2.- Get mymembers

$response_members = \Httpful\Request::get($api_base . '/members')
->addHeaders($api_headers)
-=send();

echo "2.- Get my members:

<pre>".json_encode(%$response_members->body, JSON_PRETTY_
PRINT)."</pre><hr>
";

//3.- Get values from the first of my members
if(count($response_members-=body->data) >= 1){
$member_id = $response_members->body->data[@]->id;

$parameters = [
'member_id' => $member_id,
'sensor_id' => 'temp',
'ts_start' => '2015-01-01 @0:00:00°',
'ts_end' => '2017-01-01 00:01:00",
'1imit"' => '5"',
'cursor' => '@"',
'order' => 'desc'

1;

$response_values = \Httpful\Request::get($api_base . '/values?'.http_build_

query($parameters))

->addHeaders($api_headers)
->send();

echo "3.- Get values from one member (member_id= ".$member_id."):

<pre>".json_
encode ($response_values->body, JSON_PRETTY_PRINT)."</pre><hr><hr>";

Figure 21: PHP example code

2.3 Virtual Fort Knox Cloud Platform

Virtual Fort Knox (VFK) is a federative platform for the manufacturing industry developed by the
Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA). It will offer
manufacturing companies an IT strategy that is cost-efficient, agile and scalable. Companies will be
provided with efficient access to Industry 4.0 software solutions which are independent of manufacturers,
in order to make advances in the digitalisation and optimisation of their production processes. Figure 22
depicts the concept of VFK. It is based on a cell structure and follows the “security-by-design” principle.
Each VFK cell is a securely encapsulated environment for service users and service providers.

Virtual Fort Knox

o
= - - e

() % 2N W%

Platferm-Management VFK-Cell YFK-Cell

VFK-Infrastructure

Figure 22: Virtual Fort Knox Concept

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 30 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Figure 23 illustrates the VFK architecture. The physical devices are on the show floor level and are
called Smart Objects (e.g. equipment or cyber-physical systems (CPS)). Due to the large number of
communication protocols, a middleware is used for the communication. This middleware is called
Manufacturing Services Bus (MSB) and is described in chapter 2.3.1. To communicate with IT services
running in the cloud these services are also connected the MSB. Following a service oriented approach,
the services can be aggregated to new services that provide new functionalities. Economically relevant
will be the opportunity for Independent Service Vendors (ISVs) to offer their services in the VFK
marketplace where the end users is be able to purchase the services they need. E.g. an equipment
manufacturer can offer some special services for its equipment and the customers can purchase the
services which they need. Form the technical side VFK offers a software development kit (SDK) which is
available in all common programing languages. Applications can be hosted in the cloud infrastructure in
form of virtual machines and docker containers. Additionally, the platform provides a flexible middleware
as abstraction layer between components which allows changes to the flow of information at run-time.

Devices VFK Marketplace VFK SDK

End-User

Basic
Services

Aggregated :
Services
Communities

|
— 00
dhh

Independent
Service Vendors

Services

'\ 1 A
~
(\ = g e o o e
\) S
- -~ -
7S
2 ,,/Service Bus A = “
Cd
ring

Manufactu

Platform Integration
Operator Services
Smart Objects E @
(Equipment & CP(P)S) a

Figure 23: Virtual Fort Knox Architecture

Research
Virtual Fort Knox

2.3.1 Cell Concept of Virtual Fort Knox

Each organization, using VFK, operates within an encapsulated environment, referred to as a cell. These
cells can be publicly hosted or run on a local machine in the network infrastructure of the organization,
as shown in Figure 24. Data cannot be transferred between cells, unless applications or smart objects
are specifically set up to do so (e.g. a bridge interface). Generally, it is advised to use the middleware
accompanying VFK to set up communication within each cell. Each organization with its own cell may
consist of multiple users. Users can deploy virtual machines or will be able to download preset software
from the shop. Such preset software will be available in the centralized shop, which operates similar to
other app-shops. By default, components which are deployed by a user are only visible, and therefore
useable, to him. However, they can be made visible to other users within the organization as well.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 31 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Figure 24: VFK cell concept with locally hosted cells and publicly hosted cells in the main infrastructure

2.3.2 Middleware - Manufacturing Service Bus

The Manufacturing Service Bus (MSB) enables a fast and low-effort integration of smart objects or IT-
Services, because it provides the integration between various communication protocols such as RESTful
Web Service or WebSocket APl and various communication standards, for instance OPC UA. For this
purposes the MSB provides common interfaces which allow the communication between smart objects
and IT-services. The communication process is shown in Figure 25. The data are transferred in an
encrypted channel. All send data are transformed to a common data format which ensures that all
communication participants can communicate with each other. Received data are added to a queue to
allow communication between communication partners with different communication cycles. The routing
of the data is done using so-called integration flows, which allow the users to flexibly define where data
is forwarded to. Integration flows can be defined without programming skills in the web based user
interface of the MSB. Alternatively, a RESTful API is also available for automation purposes.

@ Service
Research

’
Virtual Fort Knox "
a '
I connection-based
communication
)
] i
7\
” r

|

\

L\
\ N

6 5]

Service Bus ’v\ - ~ I

Manufacturing 7 \ 7’

Encrypted
channel

Figure 25: Communication Process of the Manufacturing Service Bus

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 32 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2.3.2.1 Communication pattern

The communication follows the pattern depicted in Figure 26. At the start of the communication, the
client registers itself with the appropriate interface (depending on the used communication protocol).
When registering, the client sends its self-description, so that the MSB knows who is registering and
what capabilities are available and which data can be expected. After registration is done the client can
send data by throwing an event that contains the data. To send data to the client the MSB calls the
appropriate function on the client with the data as function parameters.

Smart Object/ !
Smart Application :

'
'

'

: : (1) Register Service
' —

'

1 ———

i i (2) Throw Event i
' Client i "Gl [nterface

—h

H i (3) Call Function !

]
] f— |

Figure 26: Communication Pattern of the Manufacturing Services Bus

2.3.2.2 Self-description of services

Each service has a self-description describing its characteristics. The structure of the self-description is
shown in Figure 27. A service is classified as an Application or as a Smart Object and can be identified
by its uniqgue UUID. Data that is send by a service is described as events. Data that is send to the
service can be received as function. Functions can be used to trigger capabilities of the service by
internally mapping the incoming function to a callback function in the service-specific code. Such a
callback function can trigger return events as well.

Application Function

functions 0..* | functionld: String

\—%7 name: String
1 description: String

Service dataFormat: JsonObject
0..*
uuid: UUID
name: String responseEvents
description: String
token: String 0.*

ﬁ& t Event

) . eventld: String
SmartObject 0..* | hame: String

events description: String
dataFormat: JsonObject

Figure 27: Self-description of services

Once a component (smart object or application) is registered at the MSB, the MSB can be configured to
transfer information to and from the component automatically by manual configuration via a graphical
user interface (GUI). A simple example for the communication pattern is shown in Figure 43. To achieve
the shown information exchange, three main configuration steps have to be completed: selection of the
two components, selection of the corresponding event and function and finally mapping of output data of
the smart object to the input parameter of the function of the application. The data emitted by the smart
object is attached to the event as a JSON string. The data is then mapped to the corresponding input
parameters of the function of the smart application and wrapped in a JSON string again.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 33 of 57

H2020-761809: DIATOMIC diatomic

»

—

Client
(3) Call Function .

Health Experiment — Step-by-Step Integration *—=
T Smart Object
; Ject! MSB |
i i - (1) Register Service i
i i — (2) Throw Event i
: e — 5|
: 1 rD :
| ! 09 |
1 § :

— Interface 3 i

Smart Application = !
- i

(1) Register Service g i

f—

Figure 28: Exemplary pattern for data transfer of smart object to an application

For websocket communication ready-to-use client libraries in several programming languages are
available, which developers of smart objects and applications can use to connect their own product to
the MSB.

2.3.2.3 Meta data format

The data format of events and functions is shown in Table 7. It is based on the OpenAPI Specification
2.0 (aka Swagger Specification) derived from the JSON Schema for programming language independent
definitions of data format. The complete OpenAPI specification that is used for the Swagger-Ul as well
as for the applications JSON definition can be found under https://github.com/OAI/OpenAPI-

Specification.
Listing 1 shows an example for the specification of a complex object.

Table 6: Meta data format of the Manufacturing Service Bus

Common Name | Type Format Comments
Integer integer int32 signed 32 bhits
Long integer int64 signed 64 bits
Float number Float
Double number double
String, Short string
Byte string Byte
Boolean boolean

. , As defined by date-time -
Date string date-time REC3339
Common Name | Type ltems Comments
Array, List, Set array <items>

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 34 of 57

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
Common Name | Type Properties Comments
Model object <properties>
Common Name | $ref Comments
Reference #/definitions/<Model>

Listing 1: Sample of a complex object specification

{ "dataObject":{
"$ref":"#/definitions/alarm" },
"alarm":{

"type":"object", "properties”:{
"reason":{"type":"string"},
"errorCode":{"type":"integer","format":"int32"},
"machine":{"$ref":"#/definitions/machine"} } },

"machine":{
"type":"object", "properties":{
"id":{"type":"integer","format":"int64"},

"name" : {"type":"string"}
Y1}

2.3.3 RESTful API
2.3.3.1 Registration

The MSB supports plain old REST to communicate with applications and smart objects. While the
WebSocket interfaces allow to infer the connection state of connected smart objects and applications,
the REST interface does not allow this. The reason for this is the stateless nature of REST interfaces.

The MSB’s REST interface can be reached at port 8083, regardless of the cell the MSB resides in. The
OpenAPI specification can be found at the same port under the path /swagger-ui.html. That means, that
for MSB reachable under the URL msb.vfk.de, the REST API would be reachable under the URL
msb.vfk.de:8083, with the APl documentation available under msb.vfk.de:8083/swagger-ui.html.

The Swagger-Ul is a documentation tool for APIs that provide an OpenAPI specification. The MSB
provides such a specification. While the OpenAPI specification should provide enough information on the
interface for basic use cases, it does not provide enough information for complex applications. This
documentation serves to supplement the Swagger-Ul specification.

As shown in Figure 29, the self-description described in Figure 27 has been extended to support the
integration of the endpoints of a RESTful application. A RESTful application can be registered to the
MSB in two different ways. One possibility is to use the MSB GUI and the other one the REST API of the
MSB.

2.3.3.1.1 Registration with REST API

The REST API two endpoints: One for the registration of an application (Figure 30) and the other one for
the registration of SmartObjects (Figure 31). The self-description of the application that should be
registered must be described as a JSON object. Listing 2 shows such a JSON description of a simple
application and is meant to serve as an example. The fields contained in the JSON definition are
described in Table 7.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 35 of 57

H2020-761809: DIATOMIC

diatomic

Health Experiment — Step-by-Step Integration *—=
Endpoint EndpointFunction
0..*| url: String 1 functions httpMethod: [GET,PUT,POST,DELETE]
. connectionType: [REST] 1..*| connectionFormat: [JSON]
endpoints
1
1 1
Application Function
functions 0..* | functionId: String
<7 name: String
1 description: String
Service dataFormat: JsonObject
0..*
uuid: UUID
name: String responseEvents
description: String
token: String 0..*
% 1 Event
| i eventld: String
SmartObject 0..* | hame: String
events description: String

dataFormat: JsonObject

Figure 29: Extended self-description for RESTful API

/rest/application/register

Parameters

Parameter

application

Value

(required)

Parameter content type: | application/json ¥

Response Messages

HTTP Status Code
201

401
403

44

Try it out!

Reason

Created
Unauthorized
Forbidden

Not Found

/application/registe;
inti Parameter
Description ype Data Type
application body Example Value
1
"configuration”: {
“string”,

Response Model

"configuratienUrl®:

": "string”,
"parameters”: {}
Ts
“connection”: {

"connectionFormat": "J

"connectionStat:

"connectionType”: "WEBSOCKET",

"endpoint”: "string”,

"lastContact": "2018-83-088T15:54:38.3217" ~

Headers

Figure 30: REST endpoint to register application

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx

Page 36 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
/rest/smartobject/register /smartobject/register

Parameters

- Parameter
Parameter Value Description Type Data Type
smartObject |(,cquired) smartObject body Example Value
i
"configuration”: {
"configurationUrl”:
2
"parameters”: {}
Parameter content type: | application/json ¥ b
"connection”: {

"cannectionFornat”: "3

"connectionStat:

"connectionT: BSOCKET",
"endpoint”: "string”,
"lastContact”: "2015-83-88T15:54:38.3511 7

Response Messages

HTTP Status Code Reason Response Model

Headers
201 Created
401 Unauthorized
403 Forbidden
404 Not Found
Try it out!

Figure 31: REST endpoint to register SmartObject

Listing 2: Sample self-description of REST application as JSON object
{ "@class": "Application",
"uuid": "71f747a8-bl2e-476a-bdb7-85c68c59c282",
"name": "System Information",
"description": "Provides information about a remote system",
"token":"auniquestring",
"events": [{
"@id": 1,
"dataFormat": {
"dataObject": {
"type": "object",
"properties”: {
"system": {"type": "string"},
"name": {"type": "string"} } } 1},
"description": "Displays live information about a remote system.",
"eventId": "live-information",
"name": "Live System Information" }],
"functions": [{
"@id": 1,
"functionId": "/system-information",
"name": "System Information",
"description”: "Provides System information",
"dataFormat": {},
"responseEvents": [1] }],
"endpoints": [{
"url": "http://www.example.com",
"connectionType": "REST",
"functions": [{
"httpMethod": "POST",
"connectionFormat": "JSON",

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 37 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

3]
}

"function": 1 }]

Table 7: Description of fields contained in JSON object of a self-description

@class

Can either be Application or SmartObject, depending on which type of object is
described.

uuid

A unique identifier for the application. A valid identifier can be generated under
https://www.uuidgenerator.net/version4.

name

The name of the application that will be displayed on the MSB GUI.

description

A textual description of the application

token

A token that will be entered in the MSB GUI to complete the registration of the
application

events

A JSON description of the events that the application provides to the MSB. The
defined events have to provide in incremental numerical id, as well as a unique
textual event id. The numerical id is used to refer to the event as a response event
in a function definition, while the textual id is used to route the events information
within integration flows. The dataFormat follows the OpenAPI specification 2.0. The
outer object of the data format must be called dataObject and must be of type
object. Everything within the dataObject is optional and can be defined by the
developer.

functions

A JSON description of the functions that the application provides to the MSB. The
defined functions have to provide in incremental numerical id, as well as a unique
textual function id. The numerical id is used to refer to the event as a response
event in a function definition, while the textual id is used to route the function
information within integration flows. Additionaly, the functionld is the path that is
attached to an endpoint. If a function can be reached under the url
www.example.com/someFunction, the functionld must be /someFunction. The
numerical ID is used under endpoints to connect endpoint definitions with
functions. The dataFormat follows the OpenAPI specification 2.0 and is completely
developer defined.

endpoints

A description of the endpoints under which the application can be accessed by the
MSB. A URL and a connection type have to be provided. The functions section
further describes how the functions can be accessed by the MSB. The function
attribute in the specification refers to the @id attribute of a function defined in the
outer application description scope.

2.3.3.1.2 Registration with MSB GUI

A REST Application can be also added using the MSB GUI. Therefore, you must select the
APPLICATIONS tab and press the “+” Button in the left corner. In the pop up you must press “Create
App” and the “Manual app creation wizard” as shown in Figure 32 will appear. In Step 1 an UUID is
automatically generated and you can enter other basic information like the name and the description of

the application.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 38 of 57

https://www.uuidgenerator.net/version4

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Manual app creation wizard
1. Basic Information

Basic Information about the application.
Application UUID: e30if2379-0579-4da0-h7d2-2f9c44a04ac2
Application name:* | sample REST application

Application description: | sample REST application

Cancel Next

Figure 32: Manual app creation wizard — Step 1: Basic Information

In Step 2 (see Figure 33) the URL of the REST endpoints must be defined.

Manual app creation wizard

Basic Information 2. Endpoints
Add new Endpoints here
Ct
s./fsample-rest-server.de REST v o
+add Endpoint
Cancel Back Next
—

Figure 33: Manual app creation wizard — Step 2: Endpoints

In Step 3 (see Figure 34) for each defined REST endpoint functions can be defined. The path can
contain parameters in the form of {parameterl}. This data format of the parameters must be defined in
the “Request Schema” as described in section 2.3.2.3. If the function is called via an integration flow the
parameter can be mapped from the triggering event. The parameter will be replaced with the value of
provided by the event and the REST call will be executed.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 39 of 57

diatomic

H2020-761809: DIATOMIC

Health Experiment — Step-by-Step Integration *—=
Manual app creation wizard
Basic Information 2. Endpoints 3. Functions
., https://sample-rest-server.de @
: : {userld GET o v -JSOILI-- o v
1 an pplic est

Cancel Back Next

Figure 34: Manual app creation wizard — Step 3: Functions

The response of the executed REST call will be send as a response event. The response events for the
functions can be defined in Step 4. In the “Response Event Schema” you must described the data format
of the data that will be responded by the REST application (see section 2.3.2.3).

Manual app creation wizard
Basic Information 2. Endpoints 4. Response Events

Functions in Endpoint https://sample-rest-server.de are
v GetData

» Response

Event which is send after the REST ca

"dataObject”: {

Cancel

Figure 35: Manual app creation wizard — Step 4: Response Events

In the last two steps you can verify your input and finish the wizard. After that the application will
automatically appear in the applications list.

2.3.3.2 Send data

Once your application has been registered and verified to the MSB it is ready to receive information via a
function call and to send information to the MSB via an event. An event is send as JSON object with the

fields described in Table 6.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 40 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Table 8: Description of fields contained in JSON object of an event

uuid UUID of the Service that sends the event.

eventld Id of the event as definied in the self-description of the Service.
priority Priority with which the event is to be processed by the MSB
dataObject JSON object that contains the data of the event.

The event is then sent to the REST endpoint (/rest/data) shown in Figure 36.

/rest/data /data

Parameters

I Parameter
Parameter Value Description Type Data Type
incomingData | (,.quired) incomingData body Example Value
{
"dataObject™: {},
"eventId”: "string”,
P "postDate”: "2018-03-88T15:54:38.3417",
"priority”: "8",
Parameter content type: applicationfjson ¥ “ImlaPe P

Response Messages
HTTP Status Code Reason Response Model Headers
208 0K
201 Created
4e1 Unauthorized
403 Forbidden
404 Not Found
Try it out!

Figure 36: REST endpoint to send data

2.3.3.3 Registration and verification of a component

Upon first boot up of a service, the service connects to the MSB and provides a self-description (more on
how to achieve this and details on the self-description in section 2.3.2.2). At this point the component is
not yet visible to the user, who needs to activate it first. To do so the user has to navigate to the SMART
OBJECTS or APPLICATION tab, depending on the self-description of the component and click the
button for new components (“+”), as can be seen in Figure 37. The classification into smart objects or
application is based on the self-description, set by the developer. Its purpose is to allow easier distinction
for human users and has no further implication beyond that. As a rule of thumb, smart object should
contain at least one sensor or actuator.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 41 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

ES|)
Vital Fort Knox Platrm X

<« C (0 | © 192.168.0.100:8080/ # tapplication ? &

(€

1. Go To “Smart Objects”|§

© Neue Applikation erstellen.

Figure 37: Activate new Component in GUI of MSB

The user is then asked to verify the component by inserting the security token which is part of the self-
description and should be provided by the developer. At this stage the user can also decide if the
component should only be visible to him or the entire organization (see Figure 38 below). Visibility
decides if other user can see the component when they connect to the MSB with their user credentials. If
they do not see the component, they cannot set up new information flows including the component.
However, they still might be affected, as information flows set up by one user by trigger actions in
organization wide visible components. An example might be a component which takes a considerable
amount of time to process data and blocks any other request in this state. One user may find the
component permanently blocked when setting up his information flow without any capability to identify
who is blocking the component, since he cannot see the integration flow of another component which is
invisible to him.

Virtual Foet Knox Platfoers X

€ C O © 192.168.0.100:8080/# lapphcat -

Figure 38: Security Token and Visibility Setting (MSB GUI)

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 42 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2.3.3.4 Reviewing of registered components

After completion of the registration process, the new component will be listed in the appropriate tab
(SMART OBJECTS or APPLICATIONS) with its self-description. This description includes general
information like name and prose description of its general purpose, as well as specific information
regarding the outgoing events the component can throw and functions which can be linked to incoming
events, as seen in Figure 39. The component is now ready for the modelling of information flows. If the
user wishes to delete the component, he can do so at any time by selecting the component in the
respective tab, clicking the small garbage bin icon in the bottom left and confirming his decision.

G @ Application A
@ [v Events
Benjamin Gotz A

EDU

@ DASHBOARD
e INTEGRATION FLOWS
@ SMART OBJECTS
l (E|
e GATEWAYS
e MONITORING
0 ADMIN

Your Smart Object will show up with
all events and functions

Figure 39: Detailed Information about Component (MSB GUI)

2.3.3.5 Settings configuration for components via MSB

Optionally, the configurations tab, shown in Figure 40, allows the user to configure internal values of a
component remotely via the MSB. This feature is optional and has to be set up by the developer in the
program code of the component. If no remote configuration is allowed, the tab name is greyed out and
inactive. New parameters can be set by change the value on the right and pushing the orange save
button on bottom right. If the new value does not correspond to the required format indicated in the
middle row, the changes will not take effect. If a component is modified which is currently offline, the
changes will not take effect.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 43 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

® Libelium_Device_15_Feb

Overview Events Functions Flows
dpak dpak
TestOrga

@ orsrioomo
@ nrecranon riows

. FLOW SUMMARY

@ APPLICATIONS
® GATEWAYS
@ MONITORING

c G insaved changes!) Save

Figure 40: Detailed View on Component - Configurations Tab

The Flows tab show all integration flows which the component is currently a member of (see Figure 41).
When activating a new component, this tab is empty. Clicking on the arrow on the right lets the user
jump directly to the selected flow.

a = = @ Machine Traffic Light
@ ME Smart Product 1 Overview Events Functions

@ APZ Dashboar¢ ME Smart Product 1

estOrga

@ DASHBOARD @ DPAK_HandlerMockup
VEBSOCKE Name Description Deployed Jump to Flow

e INTEGRATION FLOWS esp Lathe Ethernet CmartBUtionAmD >

FLOW SUMMARY @ FWLMillingMachine

@ @ L\.b“elwurﬂ_DeuncE

APPLICATIONS @ L._b“eliurjn__pewce_1S_Feh

@ GATEWAYS @

@ wonmorne @ test_client

e ADMIN

¥ ¥ v ¥

Figure 41: Detailed View on Component - List of all associated Flows (MSB GUI)

2.3.3.6 Data routing with integration flows

2.3.3.6.1 General information about integration flows

On the one hand, the middleware approach replaces the otherwise required point-to-point connections
between the components and reduce the maintenance effort for the IT-personnel. On the other hand, it
takes over the function of the event listener for all components and allows the configuration of this
function at run time. This simplifies the adaption process in case changes to existing solutions are
required (e.g. replacement of an old component). It also simplifies the implementation of new solutions,
which rely on data or processing capabilities of existing components and can be configured at run-time
without shutdown of the entire system.

To understand how to design components for the use with the MSB, it is useful to first understand, how
the user configures his solution based on the available components. Figure 42 shows a simple example
for such a solution from view of a user who configures two components to communicate. Once the

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 44 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

integration process is complete, the left component can send information to the second one for further
processing. The user who implements the solution used a building block concept in a graphical user
interface to setup this connection. To achieve the desired information flow, three conditions need to be
met, which are represented in Figure 43:

e The components are registered with the MSB (self-description is provided) and activated.
e The information flow is modelled in the MSB by the user.
¢ The information flow is triggered by the first component in the chain at run-time.

® Simple Flow

Properties Flow Designer
Step 1 Step 2
test_client DPAK_HandlerMockup
29072585-26f1-423%9-b2de-3352d8f8055d 22091 2d8-bad0-498a-bc31-55b6344cfa62
Out In
Event4 - receiveSlotNumber -

Figure 42: Simple Information Flow modelled in the MSB GUI (only part of GUI is shown)

Smart Object

(1) Register Service

»

—

Client

__ (2) Throw Event

Interface

Smart Application

(1) Register Service

a

—

Client
(3) Call Function

Figure 43: Steps to compete the Exchange of Information

It is important to understand that each component solely communicates with the MSB and does not per
se know preceding or subsequent component in the chain of information. This has implications on the
design as intrinsic knowhow between components cannot be expected and should therefore be avoided
and all contextually required information needs to be available in the self-description or needs to be
exchanged in the events.

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 45 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2.3.3.6.2 Modelling of an Information / Integration Flow

The MSB is technically able to map events from a component onto functions of the same component.
However, this capability should not be used in general to keep the load on the MSB low. Besides, the
latency of the MSB typically exceeds component-internal communication by a large margin due to the
underlying IP-based communication.

2.3.3.6.3 Initial Creation of an Integration Flow

To build a meaningful information flow, at least two separate components are required. In context of the
MSB a model for an information flow are called integration flow. Figure 44 shows the first step in creation
of such a flow in the INTEGRATION FLOWS tab which is initiated similarly to the activation of a
component. Once the blank flow is created, it needs to be named, while a description by the user is
optional. The modelling can then be initiated by clicking the Flow Designer tab (3. in Figure 44).

@ PartRepo changed

hs) Flow Designer
@ e -
Benjamin Gotz
\\

EDU LowBattery g \
6 DASHBOARD 2 T -

: 1 "

| M & o o 3. Hit “Flow

' Designer”

Update Displ ®

@smnrosﬁm
2. Insert Flow

@ APPLICATIONS Name
e GATEWAYS
@ MONITORING 1. Hit

non

0 ADMIN +

Figure 44: First Step in Creating a new Integration Flow (MSB GUI)

2.3.3.6.4 Selection of Components for an Integration Flow

Within the flow designer view, all available components are show on the right side. If the desired
component is not shown, the list can be extended to show all smart objects or all applications by clicking
on the respective fields. If the component cannot be found, it has not been activated and the steps of
section 2.3.3.3 need to be competed again. The components, required for the integration flow need to be
dragged and dropped onto the main area, as indicated in Figure 45.

After dragging all components into the main area of the GUI, the user should check if all components are
positioned in the correct order according to the desired information flow from left (first component in
chain) to right (last component in the chain). This is not necessary but advised, as it improves readability.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 46 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
® - o x
Virtual Fort Knox Platfor: X
&« C | ® guimsb.edu.virtualfortknox.de/#!integrationflow/ID:117 L 4
O = = @ Sendintegers
Properties w [-yl
Benjamin Gétz
EDU 5
Step 1 Step 2 0
D oasHzoaro E 4
A C# App ;
53830fes81b8-2158.5860-b7 ea3PabT 321
EA i PYADD
SendintValues v v

sum

@ SMART OBJECTS

@ APPLICATIONS

@ GATEWAYS
@ MONITORING
@ ADMIN

1. Select Smart
Objects or
Applications

2. Drag n Drop Components

n
Q

Figure 45: Drag and Drop of Components to initiate the Creation of a new Integration Flow

2.3.3.6.5 Selection of required Events and Functions for each Component

Before connecting the components, the user needs to select the appropriate event and function for
components he wishes to connect next. This is done by clicking on the drop down menu for the
component and then clicking the desired event or function as indicated in Figure 46. By default, the first
event from the list in the self-description is selected for all components. If a component does not supply
events, the first function from the list in the self-description is set as default. Selecting a function
manually may result in a second drop down menu to appear next to the previous one as can be seen in
Figure 47.

= = @ NewFlow

Properties

Step 1 Step 2 Step3

SERVICES +

5
@ orsisonno

FLOW SUMMARY
@ swarromecrs

APPLICATIONS

QGATEWM‘S . test_client)

APZ Grafanaserv-InfluxDB Adapté?, Machine Traffic Light

g Delgate-MSB-Bridge
» (@) ctecroe s scor amssanenavans

@ monrmorinG Zventd OperationResultStatus [shine green
| Events |
e ADMIN OperationResultStatus
CONNECTED
UNCONNECTED
Functions
Store To Database
Store To Database Simple

Store To Database 3s ATays

Figure 46: Selection of Event or Function from Drop Down Menu

This implies that the selected function may trigger one of the listed events. The user has to select the
desired event from this new list, unless the component is the last one in the chain, where the output
event is irrelevant. Due to this behaviour of the GUI it is strongly advised to begin the selection of events
and functions at the last component in the desired integration flow.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 47 of 57

H2020-761809: DIATOMIC diatomic

Properties
) » » Smart Objects
step 1 Step 2 step3 " s
4]
@ DASHBOARD g ¥ Applications
Gl @) scxsiesrzee:
Shamsioo <o vk ot ssssisaono
Event Generator
i ——
) rLow summary
'APZ Grafanaserv-nfluxDd Adapter
() 737 4175 s Sosatsoeisio
SMART OBJECTS
@ Scalable APM.app1
(=) SStesion e20e-v1ie e sssssseionnn
APPLICATIONS p———
AR i,
(e APZ GrafanaServ-InfluxDB Adapter Machine Traffic Light
@ carewars R . 154 ; Delgate-Mse-Bridge
e ez \ ’ . @) BB, rao
@) monrmorme = . Store To Datal + OperationRest = shine green
Response Events
© somn

Figure 47: Selection of Return Event based on preselected Function

2.3.3.6.6 Linking of Events to Functions

After the selection process the links between the components have to be set up. Links are always
initiated from an event towards a function. The user achieves this by clicking on the orange area of a
component with the event and dragging the mouse to the component with the function which he wishes
to link to. A successful link is indicated by an orange arrow between the two components, where the
arrow is directed towards the component which’s function should be executed. An example for
successful links can be seen in Figure 48.

= = @ NewFlow
Properties
O

esp Lathe Ethernet
SITIEAS 208 4575 blab BM34H3E

step 1 Step 2 Step 3

affic Light
Ac1i s H40S T g

9 DASHBOARD

»
4l
e
&
&
5

DPAK_HandlerMackup
1268 e

FLOW SUMMARY -458a- b 1 SSmeactas2
APZ Dashboard Bridge

D
@ swaromecrs

ME Smart Product 1
A]

APPLICATIONS

@ Libelium_Device
APZ Grafanaserv-InfluxDB Adapter Machine Traffic Light e

- . test_client
= - T8 e6H1 4255 e 35520 —

@ wonrmoring Evertd . Store To Datal ~ OperationRest ~ shine green =

@GATE\VAVE I xes:_:ne[u

FWLMillingMachine
ChBITRE4-bcA1 4281 B5a4-AROESOR 1634

Uibslium Dewce 15 Feb
€ romm e S 433 3501 ot

» Applications

Figure 48: Successfully linked Components

2.3.3.6.7 Mapping of Event Data to Function Parameter Inputs

If the selected functions require no input parameters, specific mapping of parameters can be forgone
and the flow is ready to be saved. However, in most cases a mapping of data from the event to the input
parameters of the corresponding function is required. The user does this by clicking the small orange dot
in the middle of each arrow which will result in a similar GUI to Figure 49. On the left all available data
from the event is displayed and on the right all input parameters are shown. For every parameter the
particular type is displayed as well.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 48 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=
e - m} X
Virtual Fort Knox Platfor: X
&« C | ® gui.msb.edu.irtualfortknox.de/#!int T

2. Confirm Mapping

Conditions

vall : [integer, int32] -

Chosen parameter mappings:

source Torget Template 3. Repeat Step1/2 for as
required and hit
“speichern” (save)

1. Select Event and Function
parameter you want to map

[speichem

Figure 49: Detail View for Mapping Event Data to Input Parameters for a Function

The MSB is capable of simple type casts which require no further specification such as integer to float,
integer to string. Most input and all output parameters are specific to the component developers.
However, the parameters mentioned in Table 9 are always available for mapping on the side of the
event. The mapping is conducted by selecting the input and output parameters which are supposed to
be mapped, indicated by an orange background and clicking the button with the two arrows in the
middle. Once the mapping is completed it will show up in the bottom half of the screen, were it can also
be deleted by clicking the icon with the garbage bin. Once the user has mapped all function input
parameters to the respective event output parameters, he can click the orange save button in the bottom
right to save his changes. In general double mappings should be avoided, as they can lead to confusion.
If a double mapping occurs, the latest mapping, indicated by being lower in the list, takes precedence.
The mapping process has to be repeated for all links (all orange arrows in Figure 48), where mapping is
required.

Table 9: List of standard event properties

uuid UUID of the component which sends the event.

eventld ID given to the event by the developer

priority Priority set by component developer for transfer by the MSB which might be
relevant in case of high load. Possible values are:

O-low / 1(default)-medium / 2-high

postDate Time when event was thrown by the component.

recieveDate | Time when the event was published to the MSB. The distinction is relevant
when a component is set up in such a way that it can function autonomously
without MSB connection (e.g. in remote regions without WIFI connection.
Optionally events can be buffered in this case and published to the MSB once
reconnected.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 49 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

2.3.3.6.8 Setting Conditions for Data Transfer

In some cases, the information of an event should only be forwarded to a function when specific
conditions are met, which were not foreseen by the developers who designed the components. In this
case the Conditions tab in the mapping view can be used to set conditions. Conditions can only be set
for the data associated with the current event. Other conditions, for example including information from
the previous event, are not configurable. In some cases, smart design of the integration flow using the
branching (section 2.3.3.6.9) and merging (section 2.3.3.6.10) can be used to achieve the desired results
in combination with conditions. A new condition is set by clicking the relevant input parameter form the
associated event and selecting the parameter on the left side and clicking the large button in the middle.
This yields a view with a drop down menu like Figure 50 from which the desired comparator can be
chosen. Once the user does so, he can set the compare value in a newly appeared field.

Datamapping Settings

Mapping Conditions

o [String] m
eventld : [string]

priority : [integer, int32]
postDate : [string, date-time]
receiveDate : [string, date-time]
dataObject : [DBResult]
¥ DBResult : [object]
o omesgeivng @
result : [boolean]

operation : [string]

Figure 50: View to set Condition which incoming Events are forwarded to the next Component in the Flow.

2.3.3.6.9 Branching of Integration Flows

The length of integration flows, as in the number of event to function links, is largely unlimited. The MSB
allows more complex designs as well, beside strictly linear integration flows. It is possible to map one
event to several functions of one or more components, effectively creating branches in the flow, as
shown in Figure 51. In case a subset of these functions is from the same component, the component
needs to be dragged and dropped once for each individual mapping. If the branches do not merge again,
the user should decide if two separate integration flows (with two separate names) would improve the
overall overview.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 50 of 57

H2020-761809: DIATOMIC
Health Experiment — Step-by-Step Integration

diatomic

*———0

a = = @ Branching Flow

Properties

Step 1 Step 2

FLOW SUMMARY

@ SMART OBJECTS

@ APPLICATIONS Machine Traffic Light

test_client
@ GATEWAYS . B

@ MONITORING
e

o od
shine yellow

Eventd

Libelium_Device

Function3 - Event4

»
]
z
@

FWLMillingMachine
ChBIUBE b2 S54SR 534

@ Libalium Devica_15 Feb
SCeSTED B384 B0 1 MezShe s

» Applications

Figure 51: Branching Integration Flow where one Event is forwarded to Two Components

2.3.3.6.10Merging of Branches in Integration Flows

The merging branches works in a similar fashion as linking and mapping (see Figure 52 for the final view
after linking). Once the data of the first event is mapped to the input parameters and saved by clicking
the button, the mapping of the data of the second input event can be conducted accordingly. The
mappings of the other event will appear in the list of existing mappings (lower half of Figure 49) and vice

versa.
= = @ Branch Merging

Properties

Step 1 Step 2

e DASHBOARD

FLOW SUMMARY

@ swarronecrs

test_client

e |

@:mcmvs Eventd -l %8 APz Grafanaserv.influxos Adapter
" warsons (il g

@) wonmorinG ME Smart Product 1 @ Store To Datal - OperationResu =

v
e ADMIN

Match

Figure 52: Merging of Branches in an Integration Flow

2.3.3.6.11Wrap up and Saving the Integration Flow

DPAK_HandlerMockup

recelveSlotNumber

* Smart Object

Machine Traffic Light
TALICEDT TR 45 GUSTITR0

esp Lathe Ethernat
SRTID3-2298-4575 DAl B243414 38

SERVICES »

DPAK_Handiermockup
2001268 b 4980 bH 5306 34dclo2

APZ Dashboard Bridge
RS 11 4525 HSMET00ST Taa

v

FWLMillingMachine
PSR hck-2a1 Bk GBS 63

Libelium_Device_15_Fab
Sce 37605 4513- 805 1172

The final steps before the integration flow can be activated, is saving the current setting and activating
the flow. Before doing so, the user should be sure that the steps described before are completed. For

better overview they are mentioned here once again:

¢ Name and description represent the purpose of the integration flow sufficiently.
¢ All components are in the main area of flow manager (at least one square for each component).
e For each component the correct function / event is selected (lower half of the graphical

representation of the component).
e Allrequired links are in place (orange arrows).
e All mappings are set as required for each link.

¢ All conditions (if required) are set (can only be checked in the respective detail views by clicking
the orange nobs in the middle of the arrows and switching to the Conditions tab).

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx

Page 51 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

If this is the case, the user can click the orange save button on the bottom right of the browser window.
As a result, the name of the integration flow in the list of flows on the left half of the screen will change
from light gray to dark grey, as seen in Figure 53.

Branching Flow
A UNDEPLOYED

TestOrga mockup handler and .
DEPLOYED

e DASHBOARD e SmartMatch ®

DEPLOYED

FLOW SUMMARY

@ SMART OBJECTS

APPLICATIONS

@ GATEWAYS
@ MONITORING
@ ADMIN

Figure 53: Integration Flow after Saving

By default, the integration flow is still deactivated. To activate it, the user has to hit the toggle button to
the right of the name of the integration flow. The status of the flow can also be seen by a quick glance on
the color of the icon to the left of the name. Activated flows are indicated by a green icon, while
deactivated ones are indicated by a black icon. The activation of the integration flow in the backend of
the MSB takes between 1 s — 10 s.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 52 of 57

° o
H2020-761809: DIATOMIC dlatomlc
*———0

Health Experiment — Step-by-Step Integration

3 Step by step implementation of test scenario for
Application Experiment: Health

This section presents a detailed step-by-step guide for integration with the system, which implements the
test scenario for Application Experiment: Health, as described in section 1.2.

3.1 A general overview
The system integration can be summarized in just six essential steps; the Figure 54 provides a graphical
overview of these steps.

Step 1 Step 2 Step 3

Retrieving Register
Login in eVida username from MySignals
eVida device to MSB

Get user Send data

Register eVida
sensor related to MSB (user and

data sensor)

Figure 54: Integration steps

Medical device data is acquired by the means of a sensor integrated with MySignals. MySignals first
should login in eVida platform (Step 1) so it can retrieve user information (Step 2). After that, it will
register the device with Virtual Fort Knox (Step 3), so it can send the sensor data to VFK (Step 4). VFK
must them work this data into HL7 format and store it, so eVida can get it (Step 6) — after registering to
VFK (Step 5) — for easy display through the PHR interface.

The technical details of each step are provided in the following points.

3.2 Step 1: Login in eVida

The procedure to login in eVida is described in section 2.1.4.1. The access_token obtained should be
stored, as it will be needed for Step 2 (3.3).

3.3 Step 2: Retrieving username from eVida

The username is obtained as described in 2.1.4.2 (GET logged user in eVida). This value is important,
as it will allow matching the sensor data read with the user.

DIATOMIC_Health_Experiment_Step_by_Step_Integration_FINAL.docx Page 53 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

3.4 Step 3: Register MySignals device to MSB

To register the MySignals device as a SmartObject to the MSB a POST request must be sent to
https://msb.vfk.de:8083/rest/smartobject/register. The registration process is described in detail in
section 2.3.3.1. If the registration has been successful, the HTTP Status Code 201 will be returned and
the SmartObject can be verified in the MSB GUI with the token defined in the self-description (as
described in section 2.3.2.2). If the POST request returns an ERROR HTTP code or the verification is
not possible you should check if the self-description is defined correctly.

POST https://msb.vfk.de:8083/rest/smartobject/register

Parameters

Key Value

smartObject Self description as JSON.

Table 10: POST request to register MySignals device to MSB

3.5 Step 4: Send data

To send data from MySignals device to the MSB an event must be send to the MSB via a POST request
to https://msb.vfk.de:8083/rest/data (Table 11). How to send data is described in more detail in section

2.3.3.2.
POST https://msb.vfk.de:8083/rest/data

Parameters

Key Value

incomingData Data as JSON.

Table 11: POST request to send data from MySignals device to MSB

After the data has been received from the MSB, it must be defined where it will be forwarded to. Data
routing is defined in the MSB using Integration Flows. In our use case the data of the MySignals device
have to be forwarded to a data repository. Therefore, the Integration Flow from Figure 55 must be
created. This integration flow is triggered each time an event with sensor data from MySignals device is
received. The integration flow forwards the data to the “Data Repository Service” which stores the data in
a database. This is just a simple scenario to illustrate the integration into VFK. But it can be easily
extended to include any additional services.

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 54 of 57

https://msb.vfk.de:8083/rest/smartobject/register
https://msb.vfk.de:8083/rest/data

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

@® Store Data

Properties Flow Designer

Step 1 Step 2

Mysginal live information DataRepositoryService
14f1c798-3ba7-4474-9706-4b5b5493 1440 | = ’-z-z‘:z:‘z--‘:;:;--_"-'-i-:::'-::::5-'_':;'::::-: N

Live System Information v StoreData v

Figure 55: Integration flow to store data in the data repository

3.6 Step 5: Register eVida to MSB

To register the MySignals device as a SmartObject to the MSB a POST request must be sent to
https://msb.vfk.de:8083/rest/smartobject/register. The registration process is described in detail in
section 2.3.3.1. If the registration has been successful, the HTTP Status Code 201 will be returned and
the SmartObject can be verified in the MSB GUI with the token defined in the self-description (as
described in section 2.3.2.2). If the POST request returns an ERROR HTTP code or the verification is
not possible you should check if the self-description is defined correctly.

POST https://msb.vfk.de:8083/rest/smartobject/register

Parameters

Key Value

smartObject Self description as JSON.

Table 12: POST request to register eVida app to MSB

3.7 Step 6: Get user sensor related data

To request user data from the data repository service running in VFK an event must be send to the MSB
via a POST request to https://msb.vfk.de:8083/rest/data (Table 13). How to send data is described in
more detail in section 2.3.3.2.

POST https://msb.vfk.de:8083/rest/data

Parameters

Key Value

incomingData Data as JSON.

Table 13: POST request to request user data from data repository service in eVida app

The incoming event triggers the Integration Flow shown in Figure 56 which calls the “RequestData”
function of the data repository service. The event data which specifies the requested data, are mapped
to the function parameters of that function. After the data repository service executed the request, the
data are sent back as response event “ResponseData” to the MSB. This triggers the last step of the

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 55 of 57

https://msb.vfk.de:8083/rest/smartobject/register
https://msb.vfk.de:8083/rest/data

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

Integration Flow which forwards the response of the request via REST to the eVida app by calling the
“ReceiveRequestedData” function of the eVida app. The creation of integration flows is described in
detail in section 2.3.3.6.

® Request Data

Properties Flow Designer

Step 1 Step 2 Step 3

eVida Sample App DataRepositoryService eVida Sample App
69ea87d5-ef0d-42fd-9c60-c15ba061 c48 :;'_ » = 667cBc73-f0d9-41f6-bdc1-200514b21b ::':'_ N 2 69ea87d5-ef9d-42fd-9cE0-c15ba061c48a

RequestData v Request Data v | Response Dal v ReceiveRequestedData v

Figure 56: Integration flow to request user data from data repository service in eVida app

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 56 of 57

H2020-761809: DIATOMIC diatomic

Health Experiment — Step-by-Step Integration *—=

4
1]

[2]

[3]

[4]

References

“‘Healthy APl documentation”, 2018. [Online]. Available: https://ge.evida.pt/APldocumentation;
[Accessed: 09-Feb-2018]

“MySignals, eHealth and Medical loT Development Platform Technical Guide”. Available:
http://www.libelium.com/downloads/documentation/mysignals _technical guide.pdf; [Updated on 12
March 2018]

“Services Cloud Manager. Cloud Services Guide”. [Online]. Available:
http://www.libelium.com/downloads/documentation/service cloud manager_quide.pdf

Libelium’s 10T Marketplace. [Online]. Available: https://www.the-iot-marketplace.com/cloud-
services/mysignals-cloud

DIATOMIC_Health_Experiment_Step_by Step_Integration_FINAL.docx Page 57 of 57

https://ge.evida.pt/APIdocumentation
http://www.libelium.com/downloads/documentation/mysignals_technical_guide.pdf
http://www.libelium.com/downloads/documentation/service_cloud_manager_guide.pdf
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud
https://www.the-iot-marketplace.com/cloud-services/mysignals-cloud

